Micro-Environmental Monitoring of Temperature and Moisture Changes in Building Stones Using Embedded Electrical Sensors

P.A.M. Basheer and S. Srinivasan
School of Planning, Architecture and Civil Engineering (SPACE)
The Queen’s University of Belfast, Northern Ireland, U.K.

B.J. Smith and M. Gomez-Heras
School of Geography, Archaeology and Palaeoecology
The Queen’s University of Belfast, Northern Ireland, U.K.

Outline

Introduction
Objectives
Experimental Programme
Results
Conclusions & Future Work

Introduction: Stone Decay Sequence

Salt crystallisation on surface from capillary rise water

Rapid catastrophic decay of limestone

Introduction: Stone Decay Sequence

Surface Stabilisation and Re-growth of Gypsum Crust following Contour Scaling

St Matthias Church, Budapest

Introduction: Stone Decay Sequence

Gypsum Crust Development: Controls Exerted By Moisture Availability

The Parliament Building in Budapest is in a locally moist environment. Increased moisture availability compared to St Matthias appears to inhibit crust re-growth and promote multiple flaking

Introduction: Geo-Environmental Factors Influencing Stone Decay

Factors that allow surface crusts to form rapidly on new and newly exposed stone?

- Surface chemistry/mineralogy
- Variable atmospheric chemistry (short- medium- and long-term)
- Variable dust deposition rates/flux (short- medium- and long-term)
- Variable dust chemistry
- Façade topography, aspect
- Exposure to rain-wash (amount, frequency, intensity)
- Drying rate (R, E/T, wind speed)
- Surface colonisation – organics
- Surface wash in/wash out

Stone weathering processes
- Physical
- Chemical
- Biological

Environmental controls
- Moisture
- Temperature
- Wind
Introduction: Research Questions

Environmental factors:
- Characterisation of the stone response to different combinations of environmental temperature, humidity and air circulation.

Materials:
- Characterisation of the different stone types.
- How diverse stone types behave differently against selected simulated decay processes?
- How combination of stone types behave against simulated decay processes?
- How crusts influence the catastrophic decay?

Objectives

Part A: Micro-environmental Monitoring Of Building Stones
- To study the influence of micro-environmental exposure conditions with short term "insolation" fluctuations on temperature and moisture changes within building stone

Part B: Sorptivity of Building Stones
- To determine sorptivity of building stones from electrical resistivity measurements

Outline

Introduction
Objectives
Experimental Programme
Results
Conclusions & Future Work

Variables to be examined
- Temperature and moisture fluctuations (in terms of electrical resistivity) in building stones in response to heating and cooling and application of wind
- Angle of Incidence of “Insolation”
- Ambient Temperature (20 & 5°C)
- With and without the application of wind

Measurement Methods:
- Electrical resistance (ER) – Moisture sensors
- Thermistor – Temperature sensors
- Infrared Thermometer – Surface temperature sensor

Electrical Resistance Sensors

Change in resistance due to
- Moisture movement
- Ions (Chlorides)
- Temperature
Not possible to distinguish between Cl- or pH change
Part A: Experimental Plan

- **Chamber temp**
 - Summer (20°C)
 - Winter (5°C)

- **Spray of water (3min)**
 - Wet
 - Dry

- **Wind**
 - On
 - Off

- **Insolation**
 - On
 - Off

Cyclic heating:
- Light ON for 15 mins and OFF for 30 mins
- Light OFF for 30 mins and ON for 15 mins

Preparation of Stone Block

Part A: Experimental Setup

- **Distance of sensor from the stone surface**
 - 0.5 cm
 - 1.0 cm
 - 2.0 cm
 - 5.0 cm
 - 10.0 cm

- **Effect of Ambient Temperature and insolation (stone dry + wind)**

- **Effect of Ambient Temperature and insolation (stone dry + no wind)**

- **Effect of Ambient Temperature and Wind on Internal Temperature**

Effect of Ambient Temperature and insolation (stone dry + wind)

- **Effect of Ambient Temperature and insolation (stone dry + no wind)**

Effect of Ambient Temperature and Wind on Internal Temperature

- **Delta Tmax : Difference in temperature from surface (°C)**
 - Summer: 2.44, 4.40, 4.55, 5.30, 6.35
 - Winter: 2.00, 3.05, 3.85, 5.60

- **Delta Tmax - Difference in temperature from surface (°C)**
 - Summer: 3.44, 4.40, 4.55, 5.30, 6.35
 - Winter: 3.00, 3.05, 3.85, 5.60

- **Summer vs Winter**
 - Insolation increased air temperature more in winter with no wind, difference small with wind
 - Stone got warmer with insolation in summer with no wind, reverse trend in winter
 - Wind enabled cooling in summer, heated the stone in winter
 - Effect of insolation confined to surface region in winter
Temperature (°C)

Influence on Internal Temperature When Stone Sprayed with Water

No Wind

- **Summer (20°C)**
 - Time (mins):
 - No wind: 3.10 3.44
 - With wind: 3.10 3.44

- **Winter (5°C)**
 - Time (mins):
 - No wind: 3.85 4.40
 - With wind: 3.85 4.40

With Wind

- **Summer (20°C)**
 - Time (mins):
 - No wind: 3.55 4.30
 - With wind: 3.55 4.30

- **Winter (5°C)**
 - Time (mins):
 - No wind: 3.00 3.55
 - With wind: 3.00 3.55

Effect of Water Spray and Wind on Internal Temperature

ΔTmax : Difference in temperature from surface (°C)

Summer

- **Cycles**
 - Dry: 0.5 cm, 1.0 cm, 2.0 cm, 5.0 cm, 10.0 cm
 - Wet: 0.5 cm, 1.0 cm, 2.0 cm, 5.0 cm, 10.0 cm

Winter

- **Cycles**
 - Dry: 0.5 cm, 1.0 cm, 2.0 cm, 5.0 cm, 10.0 cm
 - Wet: 0.5 cm, 1.0 cm, 2.0 cm, 5.0 cm, 10.0 cm

- **No Wind**
 - Dry: 1.44 4.40 4.55 6.30 6.55
 - Wet: 2.00 2.05 2.00 2.00 2.00

- **With Wind**
 - Dry: 2.10 2.35 2.30 1.90 1.65
 - Wet: 2.15 2.70 2.65 2.10 2.15

Influence on Electrical Resistance When Stone is Wet

Summer (20°C)

- **No wind**
 - Time (mins):
 - Dry: 2.65 2.80
 - Wet: 2.65 2.80

- **With wind**
 - Time (mins):
 - Dry: 2.65 2.80
 - Wet: 2.65 2.80

Winter (5°C)

- **No wind**
 - Time (mins):
 - Dry: 2.95 2.95
 - Wet: 2.95 2.95

- **With wind**
 - Time (mins):
 - Dry: 3.00 3.00
 - Wet: 3.00 3.00

Spray of water – decreased internal temperature (cooling)

Wind – led to a significant increase in surface temperature

Resistance Ratio (Rt/Ro)

- **0.0**
- **0.1**
- **0.2**
- **0.3**
- **0.4**
- **0.5**
- **0.6**
- **0.7**
- **0.8**
- **0.9**
- **1.0**
- **1.1**
- **1.2**
- **1.3**
- **1.4**
Time of Arrival of Moisture Front at Different Depths

<table>
<thead>
<tr>
<th>Ambient temperature</th>
<th>Wind conditions</th>
<th>Arrival of moisture front (mins)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summer (20°C)</td>
<td>Without wind</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>With wind</td>
<td>20</td>
</tr>
<tr>
<td>Winter (5°C)</td>
<td>Without wind</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>With wind</td>
<td>11</td>
</tr>
</tbody>
</table>

Arrival of moisture front (mins)
- Summer: No significant effect due to wind
- Winter: Delayed water penetration
- Ambient Temp: Slower penetration in winter compared to summer

Outline

Introduction

Objectives

Experimental Programme

Results

Conclusions & Future Work

Part B: Sorptivity of Building Stone

Capillary Absorption Test – ER Sensors

Sorptivity Coefficient

- Weight gain measurement
 \[W/A = S \sqrt{t} + W_0 \]
 - \(S \) is the sorptivity coefficient
- Time of arrival of moisture front (Electrical resistance method)
 \[d = S \sqrt{t} + d_0 \]
 - \(S_o \) is the sorptivity coefficient

Outline

- Introduction
- Objectives
- Experimental Programme
- Results
- Conclusions & Future Work
Conclusions

- Electrical resistance (ER) method can be used to monitor the moisture front in building stones
 - ER Ratio to determine the time of arrival of moisture front at different depths in building stones
 - Variations in moisture profiles within the stone due to variations in exposure
- Sorptivity coefficient can be determined using the ER method - from the depth of penetration of water front and the corresponding time

Conclusions

- Micro-environmental changes around stone resulted in significant variations in internal temperature and moisture distributions:
 - Influence of wind on internal temperature profile different in summer and winter.
 - Wind led to a cooling effect on surface in summer and heating effect in winter
 - Wind did not affect the moisture penetration in summer, but resulted in slower penetration in winter.

Conclusions

- Micro-environmental changes around stone result in significant variations in internal temperature and moisture distributions:
 - Water penetration depth different in summer and winter due to a short duration of water spray:
 - Faster penetration in summer compared to winter
 - Application of simulated insolation on the surface of stone brought higher temperature gradients inside the stone within the near-surface region.

Future Work

- Differences in internal microenvironment due to variations in ambient microenvironment can significantly influence patterns of stone decay.
 - Effect of retreat of stone blocks
 - Influence of water temperature on moisture ingress
 - Establish the reliability of the ER method to determine the sorptivity for a range of different stone types
 - Influence of ambient temperature and water temperature on sorptivity of building stones
 - Relate sorptivity to stone decay
 - Relate micro-environmental variations to stone decay

Acknowledgements

Engineering and Physical Sciences Research Council (EPSRC) in the UK through project grant EP/D08603/1

Thank you.

Any Questions?