Subsequent is the version of the paper
“When is the second local multiplier algebra of a C*-algebra equal to the first?”
by Pere Ara and Martin Mathieu
that was accepted for publication in the *Bulletin* of the London Mathematical Society in June 2011. The formatting and page numbers may differ from the final, published version.
When is the second local multiplier algebra of a C^*-algebra equal to the first?

Pere Ara and Martin Mathieu

Abstract

We discuss necessary as well as sufficient conditions for the second iterated local multiplier algebra of a separable C^*-algebra to agree with the first.

1. Introduction

After the first example of a C^*-algebra A with the property that the second local multiplier algebra $M_{\text{loc}}(M_{\text{loc}}(A))$ of A differs from its first, $M_{\text{loc}}(A)$, was found in [3]—thus answering a question first raised in [17]—, the behaviour of higher local multiplier algebras began to attract some attention; see, e.g., [4], [7], [8]. That the local multiplier algebra can have a somewhat complicated structure was already exhibited in [1], where an example of a non-simple unital C^*-algebra A was given such that $M_{\text{loc}}(A)$ is simple (and hence, evidently, $M_{\text{loc}}(M_{\text{loc}}(A)) = M_{\text{loc}}(A)$ in this case).

It was proved in [21] that, if A is a separable unital C^*-algebra, $M_{\text{loc}}(M_{\text{loc}}(A)) = M_{\text{loc}}(A)$, provided the primitive ideal space Prim(A) contains a dense G_δ subset of closed points. One of our goals here is to see how this result can be obtained in a straightforward manner using the techniques developed in [5]. The key to our argument is the following observation. Every element in $M_{\text{loc}}(A)$ can be realised as a bounded continuous section, defined on a dense G_δ subset of Prim(A), with values in the upper semicontinuous C^*-bundle canonically associated to the multiplier sheaf of A. The second local multiplier algebra $M_{\text{loc}}(M_{\text{loc}}(A))$ is contained in the injective envelope $I(A)$ of A, cf. [12], [4], and every element of $I(A)$ has a similar description as a continuous section of a C^*-bundle corresponding to the injective envelope sheaf of A. To show that $M_{\text{loc}}(M_{\text{loc}}(A)) \subseteq M_{\text{loc}}(A)$ it thus suffices to relate sections of these bundles in an appropriate way. In fact, we shall obtain a more general result in Section 4 which, in particular, unifies the commutative and the unital case. The notion of a quasicentral C^*-algebra, first studied by Delaroche [9], [10], turns out to be crucial.

It emerges, however, that the short answer to the long question in this paper’s title is: rarely. In Section 3, we provide a systematic approach to producing separable C^*-algebras with the property that their second local multiplier algebra contains the first as a proper C^*-subalgebra. We obtain a quick proof of Somerset’s result [21] that $M_{\text{loc}}^{(2)}(A) = M_{\text{loc}}^{(3)}(A)$ for a separable C^*-algebra A which has a dense G_δ subset of closed points in its primitive spectrum in Theorem 3.2 below. In our approach, the injective envelope is employed as a ‘universe’ in which all C^*-algebras considered are contained as C^*-subalgebras. However, in contrast to previous studies, we do not need additional information on the injective envelope itself.

2000 Mathematics Subject Classification Primary 46L05. Secondary 46L06, 46M20.

The first-named author was partially supported by DGI MICIN-FEDER MTM2008-06201-C02-01 and by the Comissionat per Universitats i Recerca de la Generalitat de Catalunya through the grant 2009SGR 1389. This work was carried out during a stay of the second-named author at the Centre de Recerca Matemàtica (Barcelona) supported by the Ministerio de Educación under SAB2009-0147.
In the following we will focus on separable C^*-algebras for a variety of reasons. One of them is the non-commutative Tietze extension theorem, another one the need for a strictly positive element in the bounded central closure of the C^*-algebra. Moreover, just as in Somerset’s paper [21], Polish spaces (in the primitive spectrum) will play a decisive role. Sections 2 and 3 are fairly self-contained, while Section 4 relies on the sheaf theory developed in [5].

2. Preliminaries

For a C^*-algebra A, we denote by $\text{Prim}(A)$ its primitive ideal space (with the Jacobson topology); this is second countable if A is separable. For an open subset $U \subseteq \text{Prim}(A)$, let $A(U)$ stand for the closed ideal of A corresponding to U. (Hence, $t \in U$ if and only if $A(U) \not\supseteq t$.) We denote by \mathcal{D} and \mathcal{T} the sets of dense open subsets and dense $G_δ$ subsets of $\text{Prim}(A)$, respectively, and consider them directed under reverse inclusion. The local multiplier $M_{\text{loc}}(A)$ is defined by $M_{\text{loc}}(A) = \lim_{U \in \mathcal{D}} M(A(U))$, where, for $U, V \in \mathcal{D}$ with $V \subseteq U$, the injective *-homomorphism $M(A(U)) \to M(A(V))$ is given by restriction. We put $Z = Z(M_{\text{loc}}(A))$, the centre of $M_{\text{loc}}(A)$. For more details on, and properties of, $M_{\text{loc}}(A)$, we refer to [2].

A point $t \in \text{Prim}(A)$ is said to be separated if t and every point $t' \in \text{Prim}(A)$ which is not in the closure of $\{t\}$ can be separated by disjoint neighbourhoods. Let $\text{Sep}(A)$ be the set of all separated points of a C^*-algebra A. If A is separable then $\text{Sep}(A)$ is a dense $G_δ$ subset of $\text{Prim}(A)$ [11, Théorème 19].

The following result is useful when computing the norm of a (local) multiplier.

Lemma 2.1. Let A be a separable C^*-algebra, and let $T \subseteq \text{Sep}(A)$ be a dense $G_δ$ subset. For a countable family $\{f_n \mid n \in \mathbb{N}\}$ of bounded lower semicontinuous real-valued functions on T there exists a dense $G_δ$ subset $T' \subseteq T$ such that $f_n|_{T'}$ is continuous for each $n \in \mathbb{N}$.

This is an immediate consequence of the following well-known facts: $\text{Sep}(A)$ is a Polish space (that is, homeomorphic to a separable, complete metric space) by [11, Corollaire 20] and hence any $G_δ$ subset of $\text{Sep}(A)$ is a Polish space [18, 4.2.2]; every Polish space is a Baire space [18, 4.2.5]; any bounded Borel function into \mathbb{R} defined on a Polish space can be restricted to a continuous function on some dense $G_δ$ subset of the domain [15, Sect. 32.I].

In [21], p. 322, Somerset introduces an interesting C^*-subalgebra of $M_{\text{loc}}(A)$, which we will denote by K_A. K_A is the closure of the set of all elements of the form $\sum_{n\in\mathbb{N}} a_n z_n$, where $\{a_n\} \subseteq A$ is a bounded family and $\{z_n\} \subseteq Z$ consists of mutually orthogonal projections. (These infinite sums exist in $M_{\text{loc}}(A)$ by [2, Lemma 3.3.6], for example. Note also that Z is countably decomposable since A is separable.) It is easy to see that, if the above family $\{a_n\}$ is chosen from K_A instead of A, then the sum $\sum_{n\in\mathbb{N}} a_n z_n$ still belongs to K_A ([21, Lemma 2.5]).

The significance of the C^*-subalgebra K_A is explained by the following result. Let $\mathcal{I}_{\text{ce}}(A)$ denote the set of all closed essential ideals of a C^*-algebra A. We denote by $M^{(n)}_{\text{loc}}(A) = M_{\text{loc}}(M^{(n-1)}_{\text{loc}}(A))$, $n \geq 2$ the n-fold iterated local multiplier algebra of A.

Lemma 2.2. Let A be a C^*-algebra such that $K_A \in \mathcal{I}_{\text{ce}}(M_{\text{loc}}(A))$.

(i) If $K_I = K_A$ for all $I \in \mathcal{I}_{\text{ce}}(A)$ then $M_{\text{loc}}(K_A) = M(K_A)$.

(ii) If $M_{\text{loc}}(K_A) = M(K_A)$ then $M^{(n+1)}_{\text{loc}}(A) = M^{(n)}_{\text{loc}}(A)$ for all $n \geq 2$.

Proof. Let $J \in \mathcal{I}_{\text{ce}}(K_A)$; then $M(K_A) \subseteq M(J)$. Let $I = J \cap A$; then $I \in \mathcal{I}_{\text{ce}}(A)$ by [2, Lemma 2.3.2]. By assumption, we therefore have $K_I = K_A$. Let $m \in M(J)$. As $mI \subseteq K_A$,
whenever \(\{x_n\} \) is a bounded family in \(I \) and \(\{z_n\} \) is a family of mutually orthogonal projections in \(Z \), we obtain

\[
m(\sum_n x_nz_n) = \sum_n mx_nz_n \in K_A
\]

entailing that \(mK_A = mK_I \subseteq K_A \), that is, \(m \in M(K_A) \). Consequently, \(M(J) \subseteq M(K_A) \) which implies (i).

Towards (ii) observe that \(M(K_A) = M_{loc}(K_A) = M_{loc}(M_{loc}(A)) \) by hypothesis. Let \(J \in \mathcal{K}_{ce}(M_{loc}(A)) \). Then \(J \cap K_A \in \mathcal{K}_{ce}(M_{loc}(A)) \) and, since \(J \in \mathcal{K}_{ce}(M(K_A)) \), \(J \cap K_A \in \mathcal{K}_{ce}(J) \). As a result,

\[
M(J) \subseteq M(J \cap K_A) \subseteq M_{loc}(M_{loc}(A)) = M(K_A)
\]

and the reverse inclusion \(M(K_A) \subseteq M(J) \) is obvious. We conclude that \(M^{(3)}_{loc}(A) = M(K_A) = M^{(2)}_{loc}(A) \) which entails the result.

The next result tells us how to detect multipliers of \(K_A \) inside \(I(A) \).

Lemma 2.3. Let \(A \) be a separable \(C^* \)-algebra and let \(y \in I(A) \). If \(ya \in K_A \) for all \(a \in A \) then \(y \in M(K_A) \).

Proof. It suffices to show that \(y \sum_{n=1}^{\infty} z_n a_n = \sum_{n=1}^{\infty} z_n ya_n \) whenever \(\{a_n \mid n \in \mathbb{N}\} \subseteq A \) is a bounded family and \(\{z_n \mid n \in \mathbb{N}\} \subseteq Z \) consists of mutually orthogonal projections, by [21, Lemma 2.5]. Without loss of generality we can assume that \(\sum_{n=1}^{\infty} z_n = 1 \).

Putting \(y' = y \sum_{n=1}^{\infty} z_n a_n \in I(A) \) we observe that

\[
z_j y'_j = y z_j \sum_{n=1}^{\infty} z_n a_n = y z_j a_j = z_j y a_j \in K_A
\]

by hypothesis. It is therefore enough to prove that, if \(y_j \in I(A) \) and \(y_j' z_j \in K_A \) for all \(j \in \mathbb{N} \), where \(\{z_j \mid j \in \mathbb{N}\} \subseteq Z \) consists of mutually orthogonal projections with \(\sum_{j=1}^{\infty} z_j = 1 \), then

\[
y' = \sum_{j=1}^{\infty} y_j' z_j
\]

where the latter is computed in \(K_A \).

The assumption \(y_j' z_j \in K_A \) for all \(j \in \mathbb{N} \) enables us to write \(\sum_{j=1}^{\infty} y_j' z_j = \sum_{i=1}^{\infty} w_i a_i \) for some bounded sequence \(\{a_i \}_{i \in \mathbb{N}} \) in \(A \) and a sequence \(\{w_i \}_{i \in \mathbb{N}} \) consisting of mutually orthogonal central projections with \(\sum_{i=1}^{\infty} w_i = 1 \). For each \(n \in \mathbb{N} \),

\[
(w_1 + \ldots + w_n)y' = \sum_{i=1}^{n} w_i a_i.
\]

Each projection \(w_i \) comes with a closed ideal \(I_i = w_iM_{loc}(A) \cap A \) and the \(C^* \)-direct sum \(I = \bigoplus_{i=1}^{\infty} I_i \) is a closed essential ideal of \(A \). For \(x_i \in I_i \), \(1 \leq i \leq n \), we have

\[
(y' - \sum_{i=1}^{\infty} w_i a_i)(x_1 + \ldots + x_n) = (y' - \sum_{i=1}^{\infty} w_i a_i)(w_1 + \ldots + w_n)(x_1 + \ldots + x_n)
\]

\[
= (\sum_{i=1}^{n} w_i a_i - \sum_{i=1}^{n} w_i a_i)(x_1 + \ldots + x_n) = 0.
\]

Therefore \((y' - \sum_{i=1}^{\infty} w_i a_i) x = 0 \) for all \(x \in I \) which implies that \(y' = \sum_{i=1}^{\infty} w_i a_i \) by [4, Proposition 2.12].

Recall that the bounded central closure, \(\mathcal{B}^* \), of a \(C^* \)-algebra \(A \) is the \(C^* \)-subalgebra \(TZ \) of \(M_{loc}(A) \) [2, Section 3.2]. If \(A \) is separable then \(\mathcal{B}^* \) is \(\sigma \)-unital, which will be useful in Section 3.
In Section 4, we shall need the following auxiliary result whose proof is analogous to the one of [21, Lemma 2.2] but we include it here for completeness.

Lemma 2.4. Let A be a separable C^*-algebra, B a C^*-subalgebra of $M_{loc}(A)$ containing A, and J a closed essential ideal of B. There is $h \in J$ such that $hz \neq 0$ for each non-zero projection $z \in Z$.

Proof. By [4, Proposition 2.14], $I(A) = I(B) = I(M_{loc}(A))$ and thus $Z(M_{loc}(B)) = Z$ by [4, Theorem 4.12]. For $x \in M_{loc}(A)$, let $c(x)$ denote the central support of x, see [2], page 52 and Remark 3.3.3. Let $\{h_i\}$ be a maximal family of norm-one elements $h_i \in J$ such that their central supports $c(h_i)$ are mutually orthogonal. Since A is separable, Z is countably decomposable, hence we may enumerate the non-zero central supports as $c(h_n), n \in \mathbb{N}$. Put $h = \sum_{n=1}^{\infty} 2^{-n} h_n \in J$. As J is essential, for a non-zero projection $z \in Z$, there is $h' \in J$ with $h'z \neq 0$. If $hz = 0$ then $c(h)z = 0$ and hence $c(h_n)z = 0$ for all $n \in \mathbb{N}$. It follows that $c(h_n)(c(h')z) \leq c(h_n)z = 0$ which would lead to a contradiction to the maximality assumption on $\{h_n\}$. As a result, $hz \neq 0$ for every non-zero projection $z \in Z$.

3. The second local multiplier algebra

In this section we discuss some necessary and some sufficient conditions for the first and the second local multiplier algebra of a separable C^*-algebra A to coincide. The general strategy is that this cannot happen if and only if $M_{loc}(A)$ contains an essential ideal K with the property that $M(K) \setminus M_{loc}(A) \neq 0$.

The following proposition introduces the decisive topological condition in $\text{Prim}(A)$.

Proposition 3.1. Let A be a separable C^*-algebra such that $\text{Prim}(A)$ contains a dense $G_δ$ subset consisting of closed points. Then K_A is an essential ideal in $M_{loc}(A)$.

Proof. Since K_A is a C^*-subalgebra of $M_{loc}(A)$, it suffices to show that, whenever m is a multiplier of a closed essential ideal of A and $a \in K_A$, $ma \in K_A$; in fact, we can assume that $a \in A$, by Lemma 2.3.

Let $U \subseteq \text{Prim}(A)$ be a dense open subset and take $m \in M(A(U))$. For $t \in U$, let $\tilde{t} \in \text{Prim}(M(A(U)))$ denote the corresponding primitive ideal under the canonical identification of $\text{Prim}(A)$ with an open dense subset of $\text{Prim}(M(A(U)))$. Let $\{b_n \mid n \in \mathbb{N}\}$ be a countable dense subset of A, and let T be the dense $G_δ$ subset $T = \text{Sep}(A) \cap U$. Note that, by Lemma 2.1, there is a dense $G_δ$ subset $T' \subseteq T$ such that $t \mapsto \|(m - b_n)a + \tilde{t}\|$ is continuous for all $n \in \mathbb{N}$ when restricted to T'.

Let $\varepsilon > 0$ and take $t \in T'$. Since A is separable and t is a closed point, the canonical mapping $M(A(U)) \to M(A/t)$ is surjective [18, 3.12.10] and, denoting by \tilde{m} the image of m under this mapping, we have $(m - b_n)a + \tilde{t} = (\tilde{m} - (b_n + t))(a + t)$. As $\{b_n + t \mid n \in \mathbb{N}\}$ is dense in A/t and A/t is strictly dense in its multiplier algebra, there is b_k such that $\|(\tilde{m} - (b_k + t))(a + t)\| < \varepsilon$. By the above-mentioned continuity there is therefore an open subset $V \subseteq \text{Prim}(A)$ containing t such that

$$\|(m - b_k)a + \tilde{s}\| < \varepsilon \quad (s \in V \cap T').$$

Letting $z = z_V \in Z$ be the projection from $A(V) + A(V)^⊥$ onto $A(V)$ we conclude that $\|zma - zb_k a\| = \sup_{s \in V \cap T'} \|(m - b_k)a + \tilde{s}\| \leq \varepsilon$.
We now choose a (necessarily countable) maximal family \(\{ z_k \} \subseteq Z \) of mutually orthogonal projections such that \(\| z_k ma - z_k b_k a \| \leq \varepsilon \) for each \(k \). Then \(\sup z_k = 1 \) and \(\| \sum_k (z_k ma - z_k b_k a) \| \leq \varepsilon \). As \(ma = \sum_k z_k ma \) and \(\sum_k z_k b_k a \in K_A \) we conclude that \(ma \in K_A \) as claimed proving that \(K_A \) is an ideal in \(M_{\text{loc}}(A) \).

In order to show that \(K_A \) is essential let \(y \in M_{\text{loc}}(A) \) be such that \(yK_A = 0 \). Then, in particular, \(yA = 0 \) and thus \(y = 0 \) by [2, Proposition 2.3.3].

The next result was first obtained in [21, Theorem 2.7] but we believe our approach is more direct and more conceptual.

Theorem 3.2. Let \(A \) be a separable C*-algebra such that \(\text{Prim}(A) \) contains a dense \(G_δ \) subset consisting of closed points. Then \(M^{(3)}_{\text{loc}}(A) = M^{(2)}_{\text{loc}}(A) \) and coincides with \(M(K_A) \).

Proof. Combining Proposition 3.1 with Lemma 2.2 all we need to show is that \(K_I = K_A \) for each \(I \in \mathcal{I}_{\text{loc}}(A) \). Taking \(I \in \mathcal{I}_{\text{loc}}(A) \), the inclusion \(K_I \subseteq K_A \) is evident. Let \(U \subseteq \text{Prim}(A) \) be the open dense subset such that \(I = A(U) \). Let \(T \subseteq \text{Prim}(A) \) be a dense \(G_δ \) subset consisting of closed and separated points. Fix \(a \in A \) and let \(\varepsilon > 0 \). For \(t \in U \cap T \), \((I + t)/t = A(t) \) as \(t \) is a closed point. Therefore there is \(y \in I \) such that \(y + t = a + t \) and hence \(N(a - y)(s) < \varepsilon \) for all \(s \in V \). Letting \(z = z_V \in Z \) be the projection corresponding to \(V \) we obtain \(\| z(a - y) \| \leq \varepsilon \). The same maximality argument as in the proof of Proposition 3.1 provides us with a family \(\{ z_k \} \) of mutually orthogonal projections in \(Z \) and a bounded family \(\{ y_k \} \) in \(I \) with the property that \(\| a - \sum_k y_k z_k \| \leq \varepsilon \). This shows that \(A \subseteq K_I \) and as a result \(K_A \subseteq K_I \) as claimed.

It was shown in [7], see also [4, Section 6], that the C*-algebra \(A = C[0,1] \otimes K(H) \), where \(H = \ell^2 \), has the property that \(M_{\text{loc}}(A) \neq M_{\text{loc}}(M_{\text{loc}}(A)) \). In the following result, we explore a sufficient condition on the primitive ideal space that guarantees this phenomenon to happen.

We shall make use of some topological concepts. Recall that a topological space \(X \) is called **perfect** if it does not contain any isolated points. If the closure of each open subset of \(X \) is open, then \(X \) is said to be *extremally disconnected*. Thus, \(X \) is not extremally disconnected if and only if it contains an open subset which has non-empty boundary. It is a known fact that an extremally disconnected metric space must be discrete.

Theorem 3.3. Let \(X \) be a perfect, second countable, locally compact Hausdorff space. Let \(A = C_0(X) \otimes B \) for some non-unital separable simple C*-algebra \(B \). Then \(M_{\text{loc}}(A) \neq M_{\text{loc}}(M_{\text{loc}}(A)) \).

Proof. Since every point in \(\text{Prim}(A) = X \) is closed and separated, \(K_A \) is an essential ideal in \(M_{\text{loc}}(A) \), by Proposition 3.1. By Theorem 3.2, \(M_{\text{loc}}(M_{\text{loc}}(A)) = M(K_A) \). To prove the statement of the theorem it suffices to find an element in \(M(K_A) \) not contained in \(M_{\text{loc}}(A) \).

Note that every non-empty open subset \(O \subseteq X \) contains an open subset which has non-empty boundary. This follows from the above-mentioned fact and the assumption that \(O \) is second countable, locally compact Hausdorff and hence metrisable. Therefore, if \(O \) were extremally disconnected, it had to be discrete in contradiction to the hypothesis that \(X \) is perfect.

Let \(\{ V_n \mid n \in \mathbb{N} \} \) be a countable basis for the topology of \(X \). For each \(n \in \mathbb{N} \), choose an open subset \(V_n \) of \(X \) such that \(\overline{V_n} \subseteq V_n \) and \(V_n \) is not open. Put \(W_n = X \setminus \overline{V_n} \). Then \(O_n = V_n \cup W_n \) is a dense open subset of \(X \).
Let z_n denote the equivalence class of $\chi_{V_n} \otimes 1 \in C_b(\mathcal{O}_n, M(B)_\beta) = M(C_0(\mathcal{O}_n) \otimes B)$ in Z. Let $(e_n)_{n \in \mathbb{N}}$ be a strictly increasing approximate identity of B with the properties $e_n e_{n+1} = e_n$ and $\|e_{n+1} - e_n\| = 1$ for all n; see [16, Lemma 1.2.3], e.g. Put $p_1 = e_1$, $p_n = e_n - e_{n-1}$ for $n \geq 2$. Then $(p_{2n})_{n \in \mathbb{N}}$ is a sequence of mutually orthograd positive norm-one elements in B.

Set $q_n = \sum_{j=1}^{n} z_j p_{2j}$, $n \in \mathbb{N}$, where we identify an element $b \in M(B)$ canonically with the constant function in $M(A) = C_0(X, M(B)_\beta)$. By means of this we obtain an increasing sequence $(q_n)_{n \in \mathbb{N}}$ of positive elements in $M_{\text{loc}}(A)$ bounded by 1. Since the injective envelope is monotone complete [13], the supremum of this sequence exists in $I(A)$ and is a positive element of norm 1, which we will write as $q = \sup_n q_n = \sum_{n=1}^{\infty} z_n p_{2n}$.

Suppose that $q \in M_{\text{loc}}(A)$. Then, for given $0 < \varepsilon < 1/2$, there are a dense open subset $U \subseteq X$ and $m \in C_0(U, M(B)_\beta)$ with $\|m\| \leq 1$ such that $\|m - q\| < \varepsilon$. Upon multiplying both on the left and on the right by $p_{2n}^{1/2}$ we find that

$$\sup_{t \in U \cap \mathcal{O}_n} \|p_{2n}^{1/2} m(t)p_{2n}^{1/2} - \chi_{V_n}(t)p_{2n}^2\| = \|p_{2n}^{1/2} m p_{2n}^{1/2} - z_n p_{2n}^2\| < \varepsilon.$$

Let $n \in \mathbb{N}$ be such that $V_n \subseteq U$. Define $f_n \in C_0(U)$ by $f_n(t) = \|p_{2n}^{1/2} m(t)p_{2n}^{1/2}\|$, $t \in U$ (note that $p_{2n}^{1/2} m p_{2n}^{1/2} \in C_0(U, B)$). Then $0 \leq f_n \leq 1$ and

$$f_n(t) - \chi_{V_n}(t) = \|p_{2n}^{1/2} m(t)p_{2n}^{1/2} - \chi_{V_n}(t)p_{2n}^2\| \leq \|p_{2n}^{1/2} m(t)p_{2n}^{1/2} - \chi_{V_n}(t)p_{2n}^2\| < \varepsilon$$

for all $t \in U \cap \mathcal{O}_n$. By construction, V_n is not open; hence $\partial V_n \neq \emptyset$. Each $f_n(t) \in \partial V_n$ also belongs to $W_n \cap V_n'$ as $\partial W_n = \partial V_n$ and hence $f_n(t) \in W_n \cap V_n' \subseteq W_n \cap V_n''$ since V''_n is open. For every $t \in V_n$, $f_n(t) - 1 < \varepsilon$ and hence $f_n(t) \geq 1 - \varepsilon > 1/2$ for all $t \in V_n$, by continuity of f_n. In particular, $f_n(t_0) > 1/2$. For every $t \in W_n \cap V_n'$, we have $f_n(t) < \varepsilon < 1/2$ and thus $f_n(t_0) \leq \varepsilon < 1/2$. This contradiction shows that $q \notin M_{\text{loc}}(A)$.

In order to prove that q belongs to $M(K_A)$ it suffices to show that $q a \in K_A$ for every $a \in A$, by Lemma 2.3. For each $n \in \mathbb{N}$ and $a \in A$, $q_n a = a$ since $z_j p_{2j} a \in ZA$. Therefore, $q_n \in M^c(A)$ for each n. Note that $^c A$ contains a strictly positive element h. Indeed, taking an increasing approximate identity $(q_n)_{n \in \mathbb{N}}$ of $C_0(X)$ we obtain an increasing approximate identity $u_n = q_n \otimes e_n$, $n \in \mathbb{N}$ of A. It follows easily that $(u_n)_{n \in \mathbb{N}}$ is an approximate identity for $^c A = \prod \mathbb{N}$. It is well-known that $h = \sum_{n=1}^{\infty} 2^{-n} u_n$ is then a strictly positive element.

As a result, in order to prove that $(q_n)_{n \in \mathbb{N}}$ is a Cauchy sequence in $M^c(A)_\beta$, we only need to show that $(q_n h)_{n \in \mathbb{N}}$ is a Cauchy sequence. For $k \in \mathbb{N}$, $p_{2j} \varepsilon_k = (e_{2j} - e_{2j-1}) \varepsilon_k = 0$ if $2j > k + 1$. Consequently,

$$z_j p_{2j} h = \sum_{k=1}^{\infty} 2^{-k} z_j p_{2j} \varepsilon_k = \sum_{k=1}^{\infty} 2^{-k} g_k z_j p_{2j} \varepsilon_k$$

yields that, for each $n \in \mathbb{N}$,

$$q_n h = \sum_{j=1}^{n} \sum_{k=1}^{\infty} 2^{-k} g_k z_j p_{2j} \varepsilon_k$$

$$= \sum_{k=1}^{\infty} 2^{-k} g_k z_1 p_{2} \varepsilon_k + \sum_{k=3}^{\infty} 2^{-k} g_k z_2 p_{4} \varepsilon_k + \ldots + \sum_{k=2n-1}^{\infty} 2^{-k} g_k z_n p_{2n} \varepsilon_k.$$

We conclude that, for $m > n$,

$$\|(q_m - q_n) h\| = \sum_{j=n+1}^{m} \sum_{k=2j-1}^{\infty} 2^{-k} g_k z_j p_{2j} \varepsilon_k = \max_{n+1 \leq j \leq m} \sum_{k=2j-1}^{\infty} 2^{-k} g_k z_j \varepsilon_k \leq \sum_{k=2n+1}^{\infty} 2^{-k}$$

since $g_k z_j p_{2j} \varepsilon_k g_k z_k p_{2k} \varepsilon_k = 0$ for all k, ℓ whenever $i \neq j$; therefore $\|(q_m - q_n) h\| \to 0$ as $n \to \infty$. This proves that $(q_n)_{n \in \mathbb{N}}$ is a strict Cauchy sequence in $M^c(A)$. Let $\tilde{q} \in M^c(A)$ denotes its limit,
which is a positive element of norm at most one since $M(\beta A)_+$ is closed in the strict topology. In order to show that $\tilde{q} = q$ note at first that $I(M(\beta A)) = I(\beta A) = I(A)$ by [4, Proposition 2.14]. The mutual orthogonality of the p_{2n}'s yields $qp_n = qnq_n$ for all $m \geq n$. Thus, for all $a \in \beta A$, $aq_{2n} = aq_nq_n$ which implies that $aq_{2n} = aq_nq_n$ for all a. As A is essential in $I(A)$, it follows that $q_n = q_{2n}$ for all $n \in \mathbb{N}$ by [4, Theorem 3.4]. Repeating the same argument using the strict convergence of $(q_n)_{n \in \mathbb{N}}$ we obtain that $q\tilde{q} = \tilde{q}^2$.

For all $1 \leq n \leq m$, $q_n \leq q_m$ and hence $a^*q_n a \leq a^*q_m a$ for every $a \in \beta A$. It follows that, for all n, $a^*q_n a \leq a^*\tilde{q}a$ for every a and therefore $q_n \leq \tilde{q}$ for all $n \in \mathbb{N}$. Consequently, $q \leq \tilde{q}$. Together with the above identity $(\tilde{q} - q)\tilde{q} = 0$ this entails that $q = \tilde{q} \in M(\beta A)$.

Finally, for each $a \in A$, we have $qa \in \beta A \subseteq K_A$. This completes the proof.

Remark 3.4. A space X as in Theorem 3.3 is perfect if and only if it contains a dense G_δ subset with empty interior. In [4, Theorem 6.13], the existence of a dense G_δ subset with empty interior in the primitive spectrum, which was assumed to be Stonean, was used to obtain a C*-algebra A such that $M_{\text{loc}}(A)$ is a proper subalgebra of $I(A)$ and the latter agreed with $M_{\text{loc}}(M_{\text{loc}}(A))$. In contrast to this example, and also the one considered in [7], our approach in Theorem 3.3 does not need any additional information on the injective envelope; nevertheless all higher local multiplier algebras coincide by Theorem 3.2.

Remark 3.5. Taking the two results Corollary 4.8 and Theorem 3.3 together we obtain the following, maybe surprising dichotomy for a compact Hausdorff space X satisfying the assumptions in (3.3). Let $A = C(X) \otimes B$ for a unital, separable, simple C*-algebra B. Then $M_{\text{loc}}(A) = M_{\text{loc}}(M_{\text{loc}}(A))$. But if we stabilise A to $A_\delta = A \otimes K(H)$ then $M_{\text{loc}}(A_\delta) \neq M_{\text{loc}}(M_{\text{loc}}(A_\delta))$

With a little more effort we can replace the commutative C*-algebra in Theorem 3.3 by a nuclear one, provided the properties of the primitive ideal space are preserved. We shall formulate this as a necessary condition on a C*-algebra A with tensor product structure to enjoy the property $M_{\text{loc}}(M_{\text{loc}}(A)) = M_{\text{loc}}(A)$. Note that, whenever B and C are separable C*-algebras and at least one of them is nuclear, the primitive ideal space $\text{Prim}(C \otimes B)$ is homeomorphic to $\text{Prim}(C) \times \text{Prim}(B)$, by [20, Theorem B.45], for example.

Some elementary observations are collected in the next lemma in order not to obscure the proof of the main result.

Lemma 3.6. Let X be a topological space, and let $G \subseteq X$ be a dense subset consisting of closed points.

(i) If X is perfect then G is perfect (in itself).
(ii) For each $V \subseteq X$ open, $\overline{V \cap G} = \overline{V \cap G}^G$, where \overline{G} denotes the closure relative to G.
(iii) For each $V \subseteq X$ open, $\partial(\overline{V \cap G}^G) = \partial \overline{V \cap G}$.

Proof. Assertion (i) is immediate from the density of G and the hypothesis that $X \setminus \{t\}$ is open for each $t \in G$. In (ii), the inclusion "\supseteq" is evident. The other inclusion "\subseteq" follows from the density of G.

To verify (iii), we conclude from (ii) that

$$G \setminus \overline{V \cap G}^G = G \setminus (\overline{V \cap G}) = G \cap (X \setminus \overline{V})$$
and therefore, with $W = X \setminus \overline{V}$,
\[
G \setminus \overline{V} \cap G = G \cap W = G \cap \overline{W},
\]
where we used (ii) another time. This entails
\[
\partial (\overline{V} \cap G) = \overline{V} \cap G \setminus G \setminus \overline{V} = \partial V \cap G
\]
as claimed.

Theorem 3.7. Let B and C be separable C^*-algebras and suppose that at least one of them is nuclear. Suppose further that B is simple and non-unital and that $\text{Prim}(C)$ contains a dense $G_δ$ subset consisting of closed points. Let $A = C \otimes B$. If $M_{\text{loc}}(A) = M_{\text{loc}}(M_{\text{loc}}(A))$ then $\text{Prim}(C)$ contains an isolated point.

Proof. Let $X = \text{Prim}(C) = \text{Prim}(A)$. We shall assume that X is perfect and conclude from this that $M_{\text{loc}}(M_{\text{loc}}(A)) \neq M_{\text{loc}}(A)$. By Proposition 3.1, K_A is an essential ideal in $M_{\text{loc}}(A)$. Using Theorem 3.2 we are left with the task to find an element in $M(K_A) \setminus M_{\text{loc}}(A)$.

The hypothesis on X combined with the separability assumption yields a dense $G_δ$ subset $S \subseteq X$ consisting of closed separated points which is a Polish space. By Lemma 3.6 (i), S is a perfect metrisable space and therefore cannot be extremally disconnected, as mentioned before. Since a non-empty open subset of a perfect space is clearly perfect, it follows that every non-empty open subset of S contains an open subset which has non-empty boundary.

Let $\{V_n | n \in \mathbb{N}\}$ be a countable basis for the topology of X. For each $n \in \mathbb{N}$, choose an open subset V_n of X such that $V_n = V_n \cap S \subseteq V_n \cap S$ and $V_n \cap S^c$ is not open. By Lemma 3.6 (ii), $V_n \cap S^c = V_n \cap S$ and we shall use the latter, simpler notation. Put $W_n = X \setminus \overline{V_n}$. Then $O_n = V_n \cup W_n$ is a dense open subset of X.

Using the same notation as in the fourth paragraph of the proof of Theorem 3.3 we define the element $q \in I(A)$ by $q = \sum_{n=1}^{\infty} z_n \otimes p_{2^n}$. The argument showing that $q \in M(K_A)$ takes over verbatim from the proof of Theorem 3.3. We will now modify the argument in the fifth paragraph of that proof.

Suppose that $q \in M_{\text{loc}}(A)$. For $0 < \varepsilon < 1/4$, there are a dense open subset $U \subseteq X$ and an element $m \in M(A(U))$ with $\|m\| \leq 1$ such that $\|m - q\| < \varepsilon$. Let $n \in \mathbb{N}$ be such that $V_n \subseteq U$ and choose $t_0 \in \partial V_n \cap S \subseteq U \cap S$ using Lemma 3.6 (iii). Since the ideal $C(U)$ of C corresponding to U is not contained in t_0, there is $c \in C(U)$ with $\|c\| = 1$ and $\|c - t_0\| = 1$.

As the function $t \mapsto \|c + t\|$ is lower semicontinuous, there is an open subset $V \subseteq U$ containing t_0 such that $\|c + t\| > 1 - \varepsilon$ for $t \in V$. Let $\alpha = (c^{1/2} \otimes p_{2^n}^1) \in C(U) \otimes B = A(U)$ and put $f(t) = \|\alpha m + t\|, t \in U$. By [5, Lemma 6.4], f is continuous on $U \cap S$ because $\alpha m \in A$. For each $t \in V \cap O_n$ we have
\[
|f(t) - \chi_{V_n}(t)| \leq \|\alpha m + t - \chi_{V_n}(t)\| c + t\| + \|\chi_{V_n}(t)\| \|c + t\| - \chi_{V_n}(t)|
\leq \|\alpha m + t - \chi_{V_n}(t)c \otimes p_{2^n}^1 + t\| + (1 - \|c + t\|) \chi_{V_n}(t)
\leq \|\alpha m - q\| + \varepsilon < 2 \varepsilon,
\]
since $(c^{1/2} \otimes p_{2^n}^1) q (c^{1/2} \otimes p_{2^n}^1) = cz_n \otimes p_{2^n}^2$. For each $t \in V_n \cap S$ we have $f(t) > 1 - 2 \varepsilon > 1/2$ and therefore $f(t_0) > 1/2$ by continuity of f on $U \cap S$ and the fact that $V_n \cap S^c = V_n \cap S$ by Lemma 3.6 (ii), thus $t_0 \in \partial V_n \cap S^c$.

On the other hand,
\[
t_0 \in \overline{W_n} \cap V \cap S \subseteq \overline{W_n} \cap V \cap S = \overline{W_n} \cap V \cap S^c.
\]
as V is open and using Lemma 3.6 (ii) again. Thus $f_n(t_0) \leq 2 \varepsilon < 1/2$. This contradiction shows that $q \notin M_{loc}(A)$, and the proof is complete. \hfill \Box

We can now formulate an if-and-only-if condition characterising when the second local multiplier algebra is equal to the first.

Corollary 3.8. Let $A = C \otimes B$ for two separable C^*-algebras B and C satisfying the conditions of Theorem 3.7. Suppose that $\text{Prim}(A)$ contains a dense $G_δ$ subset consisting of closed points. Then $M_{loc}(A) = M_{loc}(M_{loc}(A))$ if and only if $\text{Prim}(A)$ contains a dense subset of isolated points.

Proof. Let $X = \text{Prim}(A)$, X_1 the set of isolated points in X and $X_2 = X \setminus \overline{X}_1$. Then X_1 and X_2 are open subsets of X with corresponding closed ideals $I_1 = A(X_1)$ and $I_2 = A(X_2)$ of A. If X_1 is dense, I_1 is the minimal essential closed ideal of A so $M_{loc}(A) = M(I_1)$. It follows that

$$M_{loc}(M_{loc}(A)) = M_{loc}(M(I_1)) = M_{loc}(I_1) = M_{loc}(A).$$

In the general case, $M_{loc}(A) = M_{loc}(I_1) \oplus M_{loc}(I_2)$ by [2, Lemmas 3.3.4 and 3.3.6]. If $X_2 \neq \emptyset$, it contains a dense $G_δ$ subset of closed points and so $I_2 = C(X_2) \otimes B$ satisfies all the assumptions in Theorem 3.7 while X_2 is a perfect space. It follows that

$$M_{loc}(M_{loc}(A)) = M_{loc}(M_{loc}(I_1) \oplus M_{loc}(I_2)) = M_{loc}(M_{loc}(I_1)) \oplus M_{loc}(M_{loc}(I_2))$$

$$\neq M_{loc}(I_1) \oplus M_{loc}(I_2) = M_{loc}(A). \quad \Box$$

4. A sheaf-theoretic approach

In [5], we developed the basics of a sheaf theory for general C^*-algebras. This enabled us to establish the following formula for $M_{loc}(A)$ in [5, Theorem 7.6]:

$$M_{loc}(A) = \text{alg lim}_{T \in T} \Gamma_b(T, A),$$

where A is the upper semicontinuous C^*-bundle canonically associated to the multiplier sheaf M_A of A [5, Theorem 5.6] and $\Gamma_b(T, A)$ is the C^*-algebra of bounded continuous sections of A on T. A like description is available for the injective envelope:

$$I(A) = \text{alg lim}_{T \in T} \Gamma_b(T, I),$$

where the C^*-bundle I corresponds to the injective envelope sheaf \mathcal{J}_A of A, see [5, Theorem 7.7]. These descriptions are compatible, by [5, Corollary 7.8]. Since a continuous section is determined by its restriction to a dense subset, the $*$-homomorphisms $\Gamma_b(T, B) \rightarrow \Gamma_b(T', B)$, $T' \subseteq T$, $T' \in T$ are injective for any C^*-bundle B and thus isometric. Consequently, an element $y \in M_{loc}(M_{loc}(A))$ is contained in some C^*-subalgebra $\Gamma_b(T, I)$ and will belong to $M_{loc}(A)$ once we find $T' \subseteq T$, $T' \in T$ such that $y \in \Gamma_b(T', A)$.

Remark 4.1. Let $a \in \Gamma_b(T, A)$ for a separable C^*-algebra A. By applying Lemma 2.1 to the negative of the upper semicontinuous norm function on A, there is always a smaller dense $G_δ$ subset $S \subseteq \text{Sep}(A) \cap T$ on which the restriction of the function $t \mapsto \|a(t)\|$ is continuous.

On the basis of this, we shall obtain a concise proof of an extension of one of Somerset’s main results, [21, Theorem 2.7], in this section. This extension is twofold: firstly, we replace the
assumption of an identity by the more general hypothesis on A to be quasicentral. Secondly, we establish the result for C^*-subalgebras of $M_{loc}(A)$ containing A.

The following concept was introduced and initially studied by Delaroche [9], [10]. A C^*-algebra A is called \emph{quasicentral} if no primitive ideal of A contains the centre $Z(A)$ of A. We recall some basic properties of quasicentral C^*-algebras.

\begin{remark}
Let A be a quasicentral C^*-algebra.
\begin{enumerate}[(i)]
\item The mapping $\nu : \text{Prim}(A) \to \text{Max}(Z(A))$, $t \mapsto t \cap Z(A)$ is well-defined, surjective and continuous.
\item The Dauns–Hofmann isomorphism $Z(M(A)) \to C_0(\text{Prim}(A))$, $z \mapsto f_z$ such that $za + t = f_z(t)(a + t)$ for all $a \in A$, $z \in Z(M(A))$ and $t \in \text{Prim}(A)$ maps $Z(A)$ onto $C_0(\text{Prim}(A))$; see [20, A.34] and [9, Proposition 1].
\item Every approximate identity of $Z(A)$ is an approximate identity for A and thus $A = Z(A)A$; see [6, Proposition 1].
\end{enumerate}
\end{remark}

Part (i) of the result below on the existence of local identities is already contained in [9, Proposition 2] but we provide an independent brief proof along the lines of the proof of [6, Theorem 5].

\begin{lemma}
Let A be a quasicentral C^*-algebra, $C \subseteq \text{Prim}(A)$ compact and $t \in C$.
\begin{enumerate}[(i)]
\item There exists $z \in Z(A)_+$, $\|z\| = 1$ such that $z + s = 1_{A/s}$, the identity in the primitive quotient A/s for all $s \in C$.
\item Let U_1 be an open neighbourhood of t contained in C and let $U_2 = \text{Prim}(A) \setminus \overline{U_1}$. If $z \in Z(A)_+$ is as in (i) then $z + A(U_2)$ is the identity in $A/A(U_2)$.
\end{enumerate}
\end{lemma}

\begin{proof}
As $\text{Max}(Z(A))$ is a locally compact Hausdorff space, there is $f \in C_0(\text{Max}(Z(A)))_+$ with $\|f\| = 1$ such that $f(\nu(s)) = 1$ for all $s \in C$ [19, 1.7.5]. Identifying $Z(A)$ with $C_0(\text{Prim}(A))$, see Remark 4.2 above, we obtain $z \in Z(A)_+$, $\|z\| = 1$ such that $f_z = f \circ \nu$ and hence $z + s = 1_{A/s}$ for all $s \in C$. This proves (i).

Now let U_1 be an open neighbourhood of t contained in C and put $U_2 = \text{Prim}(A) \setminus \overline{U_1}$. Let $z \in Z(A)_+$ be as in (i). Then $\overline{U_1} = \{s \in \text{Prim}(A) \mid A(U_2) \subseteq s\}$ is homeomorphic to $\text{Prim}(A/A(U_2))$ via $s \mapsto s/A(U_2)$ [18, 4.1.11]. Therefore, any identity which holds in $(A/A(U_2))/s/A(U_2))$ for a dense set of s holds in $A/A(U_2)$. Since $(A/A(U_2))/s/A(U_2)) \cong A/s$ and $z + s = 1_{A/s}$ for all $s \in U_1$, it follows that $z + A(U_2) = 1_{A/A(U_2)}$ as claimed in (ii).
\end{proof}

With the help of Lemma 4.3 we can extend a key result in [5], viz. [5, Lemma 6.9], from the unital case to the situation of quasicentral C^*-algebras. Though the proof is similar, we include the details for completeness.

\begin{proposition}
Let A be a quasicentral C^*-algebra, and let $t \in \text{Prim}(A)$ be a closed and separated point. Then the natural mapping $\varphi_t : A_t \to A/t$ is an isomorphism.
\end{proposition}

\begin{proof}
Since A is quasicentral, the C^*-algebra A/t is unital, and since t is a closed point, A/t is simple. Therefore the natural mapping $\varphi_t : A_t \to M_{loc}(A/t)$ given by [5, Proposition 6.2] simplifies to $\varphi_t : A_t \to A/t$. As t is a separated point, $\ker t_t = t$ where $t_t : A \to A_t$ is the canonical map [5, Proposition 6.5]. Since $\varphi_t \circ t_t = \pi_t$, where π_t is the canonical surjection $A \to A/t$, we find that φ_t is injective when restricted to $t_t(A)$.
\end{proof}
Let U be an open neighbourhood of t in $\text{Prim}(A)$, and take $m \in M(A(U))$. Since $N(z - e)(t) = 0$ and $N(z - e)$ is continuous at t, as t is a separated point [5, Lemma 6.4], there is an open neighbourhood U_1 of t contained in C such that $N(z - e)(s) < 1/2$ for every $s \in U_1$. Set $Y = U_1$ and $U_2 = \text{Prim}(A) \setminus Y$. By Lemma 4.3 (ii), $z + A(U_2)$ is the identity of $A/A(U_2)$. Since $A(U_1)$ sits as an essential ideal in $A/A(U_2)$, we have an embedding of unital C^*-algebras $A/A(U_2) \subseteq M(A(U_1)) = \mathfrak{M}_A(U_1)$. The set $\{s \in \text{Prim}(A) | N(z - e)(s) \leq 1/2\}$ is closed in $\text{Prim}(A)$ and contains U_1; consequently $N(z - e)(s) \leq 1/2$ for every $s \in Y$.

Since $N_{A/A(U_2)}((z - e) + A(U_2))(s) = N_A(z - e)(s) \leq 1/2$ for every $s \in Y$, we get that $\|1_{A/A(U_2)} - e + A(U_2)\| = \|(z - e) + A(U_2)\| \leq 1/2 < 1$, and thus $e + A(U_2)$ is invertible in $A/A(U_2)$. Take any $y \in A$ such that $y + A(U_2) = (e + A(U_2))^{-1}$. Then we have

$$m_{\mathfrak{M}_A(U_1)} = m_{\mathfrak{M}_A(U_1)}(e + A(U_2))(y + A(U_2)) = (me + A(U_2))(y + A(U_2)) \in A/A(U_2),$$

since $me \in A(U) \subseteq A$. As a result, $m_{\mathfrak{M}_A(U_1)}$ belongs to the image of the map $A \to \mathfrak{M}_A(U_1)$. We thus find that the image of m in $\mathcal{A}_t = \varinjlim \mathfrak{M}_A(W)$ belongs to the image of the map $A \to \mathcal{A}_t$, and it turns out that the map $A/t \to \mathcal{A}_t$ is surjective. Since it is also injective, we conclude that it is an isomorphism, and so its inverse, φ_t, must be an isomorphism too.

The following example shows that the statement of Proposition 4.4 can fail if the C^*-algebra is not quasicentral.

Example 4.5. Let $B = C_0(\mathbb{N}, M_2(\mathbb{C}))$ be the C^*-algebra of all bounded (continuous) functions from \mathbb{N} to the 2×2 complex matrices. We shall write elements of B as $x = (x(n))_{n \in \mathbb{N}}$. Let A be the C^*-subalgebra of B consisting of those x such that $x_{ij}(n) \to 0$, $n \to \infty$ for $(i, j) \neq (1, 1)$ and $x_{11}(n) \to \mu(x)$, $n \to \infty$. Then A is a non-unital separable 2-subhomogeneous C^*-algebra with Hausdorff primitive spectrum. In fact, the primitive ideals of A are given by $t_{\infty} = \ker \mu$ and, for each $n \in \mathbb{N}$, $t_n = \{x \in A | x(n) = 0\}$ (with corresponding irreducible representations given by $\pi_{\infty}: A \to \mathbb{C}$, $\pi_{\infty}(x) = \mu(x)$ and $\pi_n: A \to M_2(\mathbb{C})$, $\pi_n(x) = x(n)$, $x \in A$). Clearly $\text{Prim}(A)$ is homeomorphic to the one-point compactification \mathbb{N}_{∞} of \mathbb{N}, since $\{U_n | n \in \mathbb{N}\}$ with $A(U_n) = \bigcap_{j=1}^{\infty} t_j$ forms a neighbourhood basis for t_{∞}.

As $C_0(\mathbb{N}, M_2(\mathbb{C})) = t_{\infty}$, t_{∞} is an essential ideal of A and $M_{\text{loc}}(t_{\infty}) = M(t_{\infty}) = B = I(A)$. Moreover, $M(A)$ consists of those x satisfying $\lim_n x_{12}(n) = \lim_n x_{21}(n) = 0$, $\lim_n x_{11}(n) = \mu(x)$, and $(x_{22}(n))_{n \in \mathbb{N}}$ is bounded. It follows that $\text{Prim}(M(A)) = \beta\mathbb{N} \cup \{t_{\infty}\}$, where all the ultrafilters in $\beta\mathbb{N}$ yield characters of $M(A)$ via $\lim_n x_{22}(n)$. Any open neighbourhood of t_{∞} in $\text{Prim}(M(A))$ must contain one of the U_n’s and hence t_m for $m \geq n + 1$. As \mathbb{N} is dense in $\beta\mathbb{N}$ we conclude that no point in $\beta\mathbb{N} \setminus \mathbb{N}$ can be separated from t_{∞}.

This leads to the following description of the associated upper semicontinuous C^*-bundle. For each $n \in \mathbb{N}$, $\mathcal{A}_n \cong A/t_n = M_2(\mathbb{C})$. On the other hand, $\mathcal{A}_\infty = \varinjlim_i M(\mathcal{A}(U_n))$ with the connecting mappings given by

$$(0, \ldots, 0, y(n + 1), y(n + 2), \ldots) \mapsto (0, \ldots, 0, 0, y(n + 2), \ldots)$$

taking into account that $\mathcal{A}_\infty \cong M(A)$ for each n. It follows that \mathcal{A}_∞ is indeed commutative and isomorphic to $C(\{t_{\infty}\} \cup \beta\mathbb{N} \setminus \mathbb{N}) = C \times \ell^\infty/c_0$. As a result, the homomorphism $\varphi_{t_{\infty}}: \mathcal{A}_\infty \to A/t_{\infty} = C$ is far from being injective. Note that $t_{\infty} \supseteq Z(A) \cong c_0$ so that A is not quasicentral.

To complete the picture we note that, in the C^*-bundle I associated to the injective envelope sheaf, the fibres are $I_n = M_2(\mathbb{C})$, $n \in \mathbb{N}$ and $I_\infty = M_2(\ell^\infty/c_0)$ with the embedding $\mathcal{A}_\infty \to I_\infty$ simply the diagonal map.
A quasicentral C*-algebra A is said to be central if the mapping ν of Remark 4.2 (i) is injective. Since this is equivalent to the hypothesis that A has Hausdorff primitive spectrum [9, Proposition 3], the same arguments as in Theorem 6.10 and Corollary 6.11 of [5] yield the following consequence.

Corollary 4.6. Let A be a central separable C*-algebra. Then all the fibres $A_t = A/t$, $t \in \text{Prim}(A)$ are isomorphic to the fibres A_t associated to the multiplier sheaf \mathcal{M}_A of A. Indeed, the multiplier sheaf \mathcal{M}_A of A is isomorphic to the sheaf $\Gamma_b(\cdot, A)$ of bounded continuous local sections of the C*-bundle A associated to \mathcal{M}_A.

Every C*-algebra A contains a largest quasicentral ideal J_A, which is the intersection of all closed ideals in A that contain $Z(A)$ [10, Proposition 1]. Clearly, the hypothesis in our main result of this section below is equivalent to the assumption that J_A is essential.

Theorem 4.7. Let A be a separable C*-algebra such that $\text{Prim}(A)$ contains a dense $G_δ$ subset consisting of closed points. Suppose A contains a quasicentral essential closed ideal. If B is a C*-subalgebra of $M_{\text{loc}}(A)$ containing A then $M_{\text{loc}}(B) \subseteq M_{\text{loc}}(A)$. In particular, $M_{\text{loc}}(M_{\text{loc}}(A)) = M_{\text{loc}}(A)$.

Proof. As $M_{\text{loc}}(I) = M_{\text{loc}}(A)$ for every $I \in \mathcal{I}_{\text{ce}}(A)$, we can assume without loss of generality that A itself is quasicentral.

Take $y \in M(J)$ for some $J \in \mathcal{I}_{\text{ce}}(B)$, and let $T \in \mathcal{T}$ be such that $y \in \Gamma_b(T, 1)$ (recall that $M_{\text{loc}}(B) \subseteq I(B) = I(A)$). By hypothesis, and the fact that Sep(A) itself is a dense $G_δ$ subset, we can assume that T consists of closed separated points of $\text{Prim}(A)$. Take $h \in J$ with the property that $hz \neq 0$ for every non-zero projection $z \in Z$ (Lemma 2.4). By Remark 4.1, there is $S \in \mathcal{T}$ contained in T such that the function $t \mapsto \|h(t)\|$ is continuous when restricted to S (viewing h as a section in $\Gamma_b(S, A)$). Consequently, the set $S' = \{t \in S \mid h(t) \neq 0\}$ is open in S and intersects every $U \subseteq \mathcal{T}$ non-trivially; it is thus a dense $G_δ$ subset of $\text{Prim}(A)$. Replacing T by S' if necessary, we may assume that $h(t) \neq 0$ for all $t \in T$.

A standard argument yields a separable C*-subalgebra B' of J containing AhA and such that $yB' \subseteq B'$ and $B'y \subseteq B'$. Let $\{b_n \mid n \in \mathbb{N}\}$ be a countable dense subset of B'. For each n, let $T_n \in \mathcal{T}$ be such that $b_n \in \Gamma_b(T_n, A)$. Letting $T' = \bigcap_{n} T_n \cap T \in \mathcal{T}$ we find that $B' \subseteq \Gamma_b(T', A)$ and hence $B'_t = \{b(t) \mid b \in B'\} \subseteq A_t$ for each $t \in T'$.

For each $t \in T$, the C*-algebras A_t and A/t are isomorphic, by Proposition 4.4 above, and since A/t is unital and simple (as t is closed), we obtain $A_t, h(t)A_t = A_t$ for each $t \in T'$. Consequently,

$$A_t = A_t h(t)A_t = (A/t)h(t)(A/t) = A_t h(t)A_t = (AhA)_t \subseteq B'_t,$$

and thus $B'_t = A_t$ for all $t \in T'$. We can therefore find, for each $t \in T'$, an element $b_t \in B'$ such that $b_t(t) = 1(t)$. It follows that $y(t) = y(t) 1(t) = (yb_t)(t) \in A_t$ for all $t \in T'$, which yields $y \in \Gamma_b(T', A)$. This proves that $y \in M_{\text{loc}}(A)$. \hfill \square

Corollary 4.8. For every central separable C*-algebra A, $M_{\text{loc}}(M_{\text{loc}}(A)) = M_{\text{loc}}(A)$.

In [17], Pedersen showed that every derivation of a separable C*-algebra A becomes inner in $M_{\text{loc}}(A)$ when extended to the local multiplier algebra. His question whether every derivation of $M_{\text{loc}}(A)$ is inner (when A is separable) has since been open and seems to be connected to the problem how much bigger $M_{\text{loc}}(M_{\text{loc}}(A))$ can be. In this direction, Somerset proved the
COROLLARY 4.9. Let A be a quasicentral separable C*-algebra such that \(\text{Prim}(A) \) contains a dense $G_δ$ subset consisting of closed points. Then every derivation of $M_{\text{loc}}(A)$ is inner.

\[\text{Proof.} \] Let \(d : M_{\text{loc}}(A) \to M_{\text{loc}}(A) \) be a derivation. Let B be a separable C*-subalgebra of $M_{\text{loc}}(A)$ containing A which is invariant under d. By [2, Theorem 4.1.11], \(d_B = d_{\text{loc}}B \) can be uniquely extended to a derivation $d_{M_{\text{loc}}(B)} : M_{\text{loc}}(B) \to M_{\text{loc}}(B)$. Both derivations can be uniquely extended to their respective injective envelopes, by [14, Theorem 2.1], but since $I(B) = I(M_{\text{loc}}(B))$, we have $d_I(B) = d_I(M_{\text{loc}}(B))$. The same argument applies to the extension of d, since $I(B) = I(A) = I(M_{\text{loc}}(A))$; in other words, $d_I(M_{\text{loc}}(A)) = d_I(B)$ which we will abbreviate to d. By [17, Proposition 2], $d_{M_{\text{loc}}(B)} = ad_y$ for some $y \in M_{\text{loc}}(B)$; in fact, $y \in M_{\text{loc}}(A)$ by Theorem 4.7. By uniqueness, $d = ad_y$ and hence $d = ad_y$ on $M_{\text{loc}}(A)$. \[\square \]

References