Skip to Content

Project STARLITE: Developing and exploiting super-miniature ultra-low thrust force sensors for small innovative spacecraft applications

School of Mechanical and Aerospace Engineering | PHD
Funding
Funded
Reference Number
MAE2025/26RW
Application Deadline
14 March 2025
Start Date
1 October 2025

Overview

STARLITE will address the critical need for direct measurement of ultra-low thrust forces generated by micro thrusters on small spacecraft, crucial for precise space operations of the future. STARLITE will develop micro-electro-mechanical-systems (MEMS) sensors with micro-Newton resolution. Placing these sensors in a vacuum and integrating them with micro-thrusters enables instantaneous thrust force measurement. The project aims to develop and integrate these sensors with water-based resistojet and electrospray micro-thrusters in collaboration with NATO partners who are developing next-generation technology for small spacecraft applications. STARLITE offers a unique opportunity to develop next-generation technology for the space sector.

The Problem
The ability to directly measure the instantaneous ultra-low micro-to-milli-Newton thrust forces generated by novel micro thrusters on-board next-generation small spacecraft could open game-changing innovations for the space sector. Some of these innovations may include the precision-pointing for in-orbit assembly of microsatellite constellations, or the accurate manoeuvring of in-orbit robots for spacecraft servicing and refuelling, or in-space asteroid mining and associated manufacturing. Vitally important to these up-and-coming space endeavours is the accurate and safe positioning of the spacecraft i.e., deciding when and how much thrust is required to get the spacecraft to where it needs to be to fulfil its mission. Yet these exciting next-generation space innovations may be in jeopardy, as direct instantaneous measurements of ultra-low thrust forces are not possible in space as the technology currently doesn’t exist. Instead, averaged values of these thrust forces must be inferred, typically by multiple, expensive high-precision accelerometers during manoeuvres, which themselves take up valuable volume on small payloads, and is an approach which can lead to an accumulation of uncertainties in the thrust estimation, particularly for small spacecraft.
The STARLITE solution
The aim of STARLITE is to prototype and demonstrate the next-generation of super-miniature micro-sensors which have the capability to directly measure the instantaneous ultra-low thrust forces generated by the latest micro-thruster technology, and thereby demonstrate the potential for future integration on-board next-generation small spacecraft. Specific objectives of STARLITE are as follows:
(1) Model, design, fabricate, characterise and calibrate a series of micro sensors which can resolve micro-to-milli-Newton’s of instantaneous force.
(2) In collaboration with NATO partners, integrate the micro-sensors on state-of-the-art micro-thrusters in a vacuum environment to demonstrate the efficacy of the new measurement technology.
(3) Present the technology at leading international conferences, and publish the work in high-impact journals to promote and showcase the new space technology.

Key transferable skills developed
Through this PhD you will develop: (i) the skillset to mathematically model to inform the design of micro-electro-mechanical-system (MEMS) sensor technology, (ii) practical skills to design and develop MEMS technology, (iii) practical skills to characterise and calibrate MEMS sensor technology (iv) a fundamental understanding on the sensor technology required for the space sector, (v) an ability to effectively present your research at international conferences and write for top international journals.

Impact and Future Career Prospects:
This PhD studentship offers exceptional career prospects by positioning the candidate at the forefront of space propulsion and MEMS sensor technology. Through collaboration with NATO project partners, the student will gain exposure to cutting-edge micro-thruster development and forge strong industry connections. This interdisciplinary experience opens pathways to roles in aerospace and defence industries, as well as opportunities for prestigious postdoctoral research. The project’s alignment with next-generation spacecraft innovations ensures involvement in impactful research communities shaping future space exploration. The candidate will emerge as a sought-after expert in MEMS technology, capable of driving technological advancements in academia, industry, or international collaborations.

Highlight Innovation and Interdisciplinarity:
This project is highly innovative and interdisciplinary, combining advanced MEMS sensor development, precision engineering, and cutting-edge micro-thruster technology for next-generation small spacecraft. By integrating expertise in microfabrication, instrumentation, and aerospace engineering, the research addresses the complex challenge of measuring instantaneous micro-Newton thrust forces with unprecedented accuracy. The collaboration with NATO partners further enriches the project, exposing candidates to applied research in space propulsion systems and fostering knowledge exchange internationally. This dynamic research opportunity offers the chance to contribute to transformative aerospace advancements, appealing to candidates eager to work at the intersection of engineering, science, and innovation.

Funding Information

UK studentships - cover tuition fees and include a maintenance stipend of £20,780 per annum, together representing an investment in your education of more than £75,000.
A UK studentship is open to UK and ROI nationals, and to EU nationals with settled status in the UK, subject to meeting specific nationality and residency criteria.
DfE studentship eligibility information can be viewed at: https://www.economy-ni.gov.uk/publications/student-finance-postgraduate-studentships-terms-and-conditions

Project Summary
Supervisor

Dr Richard Whalley, Prof Ben Thornber


Mode of Study

Full-time: Full Time


Apply now Register your interest

Aerospace Engineering overview

Our society needs exceptional engineers who can understand, create and harness technology to address our shared global challenges. Without these individuals our long-term success as technologically advanced societies and economies will be diminished. Undertaking a PhD in the School of Mechanical & Aerospace Engineering will enable you to make a real difference, positively impacting your career and through your research improving engineering methods and practice, and ultimately society.

Research undertaken by PhD students in the School of Mechanical & Aerospace Engineering forms a critical part of our research portfolio. Our research portfolio is ranked 24th in the UK with 96% of our Engineering research rated as world-leading or internationally excellent [REF 2021/ Times Higher Education]. What is more the REF2021 assessment, which is carried out by panels of academics and international experts, rated over 99% of the university research environment as world-leading or internationally excellent. Within this environment our PhD students research within the broad topics of design, materials, manufacturing, and energy.
Joining us as a PhD student you will be part of a dynamic environment and will study alongside students from many countries worldwide. It is a lively community of over 100 students, in which you will have the opportunity to develop both career and life skills, for example by participating in cohort training and mentoring programmes and student led social and cultural activities.

A PhD studentship is an investment in your personal development, worth over £100,000. Many of our PhD graduates take-up academic roles, while others go on to play leading roles in industry or become entrepreneurs. A PhD provides many benefits, among others it provides a range of “transferable skills”, such as independent and critical thinking, analytical and problem solving skills, leadership, and self-confidence. Because of these developed characteristics we see that many industry leaders hold a PhD. You will likely get a higher salary after graduation from a PhD than you do three years after an undergraduate degree. More importantly, you will get a different type of job and likely make progress faster through promotion and reward mechanisms. This, of course, depends on your ambition, but a PhD builds an exceptional career foundation.

Aerospace Engineering Highlights
Industry Links
  • The school boasts a number of strategic partnerships with world leading engineering companies. These partnerships enable our postgraduate students to forge vital links with industrial collaborators throughout their studies, gaining valuable exposure and real-world feedback. For example, the WTech Research Centre is working alongside Wrightbus to develop innovative and crucial global transport solutions. A dedicated team partnered with Rolls-Royce, is developing novel design approaches to deliver the aircraft of tomorrow. These partnerships, amongst others, mean PhD students can begin making real industry impact from year one of their studies.
World Class Facilities
  • The school encompasses world class facilities which are tailored to meet the needs of our students and research specialisms. Our materials testing laboratories can characterise a wide range of materials, including polymers and advanced composites. Our High Performance Computing (HPC) facility supports demanding numerical analysis such as Finite Element Analysis and Computational Fluid Dynamics. State-of-the-art manufacturing capabilities, including additive manufacture and robotics are powering research into The Factory of the Future.
    It is cutting edge facilities such as these, that give our PhD graduates a unique set of skills to enhance their future careers.
Internationally Renowned Experts
  • Undertaking a research degree in the School of Mechanical & Aerospace Engineering at Queen’s, you will work with and be supervised by world-leading experts in their respective fields.
Student Experience
  • An enhanced student experience is at the heart of what we do. As part of a diverse community of over 100 PhD students, you’ll be a valued part of a vibrant research community. You will benefit from a supportive mentoring program, a wide range of training opportunities and avail of the social events and wellbeing initiatives rolled out by our student-led Research Culture Committee.
Key Facts

Research students are encouraged to play a full and active role in relation to the wide range of research activities undertaken within the School and there are many resources available including:

  • The School has strategic research partnerships with a number of globally leading engineering companies, e.g. Rolls-Royce, Wrightbus, in which researchers undertake cutting edge and impactful research within multidisciplinary teams.
  • Access to state-of-the-art research laboratories and computing facilities (Northern Ireland High performance computing), along with office accommodation and opportunity to work within our aligned innovation centres
  • Access to the Queen’s University Postgraduate Researcher Development Programme and a wide range of personal development and specialist training courses.
  • A vibrant research community with opportunities to socialise, integrate and personally develop through student and university organised events.
  • Excellent graduate prospects ranging from academic, industrial to entrepreneurial opportunities.

Course content

Career Prospects

Employment after the Course
Dedicated to translating our research innovation into real world industrial and societal benefit. Many of our PhD graduates have moved into academic and research roles in Higher Education while others go on to play leading roles in industry, industry or become entrepreneurs. Queen's postgraduates reap exceptional benefits .

People teaching you

Dr Declan Nolan
Doctoral Programme Director
Mech & Aerospace Engineering
Email: d.nolan@qub.ac.uk

Course structure
Undertaking a PhD presents the opportunity to carry out novel research guided by dedicated supervisory teams who are built on expertise.

A PhD programme runs for 3-4 years full-time or 6-8 years part-time. Students can apply for a writing up year should it be required. Supervisors will offer feedback on the research work at regular intervals throughout the period of registration on the degree.

During the lifecycle of your research programme, you will be required to reach key milestones:

Initial Review – within three months (FTE) of first registration. A light touch progress meeting to establish the feasibility of the project and the research plan.

Differentiation – within nine months (FTE) of first registration. You will remain an ‘undifferentiated PhD student’ until this milestone has been completed wherein you will be required to satisfy academic staff that you are capable of undertaking a research degree.

Annual Progress Reviews – yearly thereafter Differentiation, requires students to present their work in writing and orally to a panel of academics. Successful completion of this process will allow students to register for the next academic year.

Viva voce [oral examination] - the final assessment of the doctoral degree is both oral and written. Students will submit their thesis to an internal and external examining team who will review the written thesis before inviting the student to orally defend their work at a Viva Voce.

Over the course of study, you can attend postgraduate skills training organised by the Graduate School, with opportunities to attend conferences and further training organised through your supervisor. Further growth and development opportunities are supported by community events (seminars, workshops, competitions, conferences etc) which are intentionally designed to provide platforms for showcasing your research to wider audiences.

Entrance requirements

Graduate
The minimum academic requirement for admission to a research degree programme is normally an Upper Second Class Honours degree from a UK or ROI HE provider, or an equivalent qualification acceptable to the University. Further information can be obtained by contacting the School.

International Students

For information on international qualification equivalents, please check the specific information for your country.

English Language Requirements

Evidence of an IELTS* score of 6.0, with not less than 5.5 in any component (*taken within the last 2 years) is required.

International students wishing to apply to Queen's University Belfast (and for whom English is not their first language), must be able to demonstrate their proficiency in English in order to benefit fully from their course of study or research. Non-EEA nationals must also satisfy UK Visas and Immigration (UKVI) immigration requirements for English language for visa purposes.

For more information on English Language requirements for EEA and non-EEA nationals see: www.qub.ac.uk/EnglishLanguageReqs.

If you need to improve your English language skills before you enter this degree programme, INTO Queen's University Belfast offers a range of English language courses. These intensive and flexible courses are designed to improve your English ability for admission to this degree.

Tuition Fees

Northern Ireland (NI) 1 £5,005
Republic of Ireland (ROI) 2 £5,005
England, Scotland or Wales (GB) 1 £5,005
EU Other 3 £25,600
International £25,600

1 EU citizens in the EU Settlement Scheme, with settled or pre-settled status, are expected to be charged the NI or GB tuition fee based on where they are ordinarily resident, however this is provisional and subject to the publication of the Northern Ireland Assembly Student Fees Regulations. Students who are ROI nationals resident in GB are expected to be charged the GB fee, however this is provisional and subject to the publication of the Northern Ireland Assembly student fees Regulations.

2 It is expected that EU students who are ROI nationals resident in ROI will be eligible for NI tuition fees. The tuition fee set out above is provisional and subject to the publication of the Northern Ireland Assembly student fees Regulations.

3 EU Other students (excludes Republic of Ireland nationals living in GB, NI or ROI) are charged tuition fees in line with international fees.

All tuition fees quoted are for the academic year 2021-22, and relate to a single year of study unless stated otherwise. Tuition fees will be subject to an annual inflationary increase, unless explicitly stated otherwise.

More information on postgraduate tuition fees.

Aerospace Engineering costs

There are no specific additional course costs associated with this programme.

Additional course costs

All Students

Depending on the programme of study, there may also be other extra costs which are not covered by tuition fees, which students will need to consider when planning their studies . Students can borrow books and access online learning resources from any Queen's library. If students wish to purchase recommended texts, rather than borrow them from the University Library, prices per text can range from £30 to £100. Students should also budget between £30 to £100 per year for photocopying, memory sticks and printing charges. Students may wish to consider purchasing an electronic device; costs will vary depending on the specification of the model chosen. There are also additional charges for graduation ceremonies, and library fines. In undertaking a research project students may incur costs associated with transport and/or materials, and there will also be additional costs for printing and binding the thesis. There may also be individually tailored research project expenses and students should consult directly with the School for further information.

Bench fees

Some research programmes incur an additional annual charge on top of the tuition fees, often referred to as a bench fee. Bench fees are charged when a programme (or a specific project) incurs extra costs such as those involved with specialist laboratory or field work. If you are required to pay bench fees they will be detailed on your offer letter. If you have any questions about Bench Fees these should be raised with your School at the application stage. Please note that, if you are being funded you will need to ensure your sponsor is aware of and has agreed to fund these additional costs before accepting your place.

How do I fund my study?

1.PhD Opportunities

Find PhD opportunities and funded studentships by subject area.

2.Funded Doctoral Training Programmes

We offer numerous opportunities for funded doctoral study in a world-class research environment. Our centres and partnerships, aim to seek out and nurture outstanding postgraduate research students, and provide targeted training and skills development.

3.PhD loans

The Government offers doctoral loans of up to £26,445 for PhDs and equivalent postgraduate research programmes for English- or Welsh-resident UK and EU students.

4.International Scholarships

Information on Postgraduate Research scholarships for international students.

Funding and Scholarships

The Funding & Scholarship Finder helps prospective and current students find funding to help cover costs towards a whole range of study related expenses.

How to Apply

Apply using our online Postgraduate Applications Portal and follow the step-by-step instructions on how to apply.

Find a supervisor

If you're interested in a particular project, we suggest you contact the relevant academic before you apply, to introduce yourself and ask questions.

To find a potential supervisor aligned with your area of interest, or if you are unsure of who to contact, look through the staff profiles linked here.

You might be asked to provide a short outline of your proposal to help us identify potential supervisors.

Download Postgraduate Prospectus