

4 Year PhD – Projects Booklet

2024

Medicine, Dentistry and Biomedical Sciences Pharmacy

Professor Margaret Topping Pro-Vice Chancellor (Global Engagement)

WELCOME TO QUEEN'S

Thank you for considering Queen's University Belfast for your PhD experience.

At Queen's, we are proud to be a university that is internationally recognised and globally connected.

A member of the Russell Group of research-intensive universities, Queen's is at the forefront of developing new thinking right across the University, and in the QS World Rankings by subject 2024, 19 of Queen's subjects were ranked in the top 200.

With over 25,000 students, including over 4,400 international students from over 90 countries, Queen's is a dynamic and diverse institution, a magnet for inward investment, a patron of the arts and a global player in areas ranging from cancer studies to sustainability, and from pharmaceuticals to cyber security.

In recognition of its commitment to producing research that has an impact on society, Queen's is ranked in the top 200 in the world for impact and sustainability (THE Impact Rankings 2024/ QS World University Rankings 2024: Sustainability) and is ranked in the top 150 in the world for research quality (THE World University Rankings 2024). Queen's is ranked in the top 10 in the UK for graduate prospects (Complete University Guide 2025).

We are ranked 4th in the world for international outlook but are also a university that is proud to play a key role in its local community. Situated in the heart of one of the capital cities of Europe, Queen's is renowned for its teaching excellence and international research, while Belfast is known for its warm welcome, rich culture, innovation and entrepreneurship.

At Queen's our Strategy 2030 sets out our ambition over the next six years to shape a better world through life-changing education and research. Our vision is that of a global, research-intensive university, coupled with outstanding teaching and learning, focused on the needs of our society, locally and globally.

Our PhD student population is at the heart of those ambitions, and through a partnership between our academic Schools, research institutes, and award-winning Graduate School, we seek to develop future-ready individuals who push beyond conventional boundaries and who will return to their home countries equipped to take on the leadership roles which will respond to the national strategies and ambitions of our partner countries.

Professor Colin McCoy Dean of The Thomas J Moran Graduate School

THE THOMAS J MORAN GRADUATE SCHOOL AT QUEEN'S

In addition to training our PhD students as experts in their fields, we also offer a wide range of opportunities for personal and professional development through our Graduate School. The Graduate School is a state-of-the art hub for tailored training, support and development of postgraduate students. Beyond academic subject expertise, we aim to develop thinkers, communicators, innovators and leaders who are future-ready.

The Graduate School is both an intellectual and social hub, connecting postgraduate students from all disciplines to each other and to mentors and employers within the University and beyond. It is grounded in intellectual challenge beyond disciplinary borders, personal effectiveness and the development of future-facing skills. We aim to build on the professional experiences which postgraduates arrive with at Queen's; our ethos is to nurture a culture of opportunity, innovation and enterprise and a rich, diverse, inclusive social community.

With emphasis on designing and delivering programmes which spark, encourage and support leadership, innovation and enterprise, the Graduate School is committed to providing a vibrant environment to develop economic and social participation and growth and to support wellbeing. Our aspiration is that you develop skills beyond your academic programme to facilitate your future success in today's global workplace.

We support global leaders to identify opportunities for innovation across a range of sectors and disciplines, and to develop the tools and mindset required to adapt to and ensure relevance in a changing world.

Being a postgraduate student at Queen's is about going beyond current conceptions and categories, redefining and rethinking assumptions and having a perspective that is flexible and adaptive. It's what we call 'What's Next' thinking.

This brochure provides you with a range of PhD projects for which you can apply, as well as information on the range of workshops and training opportunities available to you in our Graduate School. If you would like to discuss an individual project, please contact the supervisor whose details are provided. For general queries about doctoral study at Queen's or the wider University, please contact: Mrs Lynne Spence (<u>l.spence@qub.ac.uk</u>).

WELCO	ме то с	QUEEN'S
ТНЕ ТНО	OMAS J	MORAN GRADUATE SCHOOL AT QUEEN'S
FACULT	Y AND S	CHOOL STRUCTURE
FACULT	Y OF ME	EDICINE, HEALTH AND LIFE SCIENCES
1.	MEDICA	L EDUCATION
	1.1	"So What Happens After we Simulate?": A Qualitative Inquiry into the Experiences of Medical Students Following SBE Activities on their Professional Development
2.	PUBLIC	HEALTH
	2.1	Digitalovigilance – Discovery and Management of Adverse Reactions in Digital Health Interventions
	2.2	Nutrigenomic Investigation of Cognitive Outcomes in the Northern Ireland Cohort of Longitudinal Ageing
	2.3	Multiomic Signatures Associated with Healthy Ageing and Age-related Conditions
	2.4	Innovative Multiomic Approaches to Improve Early Detection and Diagnosis of Rare Kidney Conditions: A Transdisciplinary Approach16
	2.5	Improving Diagnosis and Treatment for People Living with Rare Diseases17
	2.6	Psychiatric-onset Dementia with Lewy Bodies in a Mental Health Inpatient Cohort
3.	CANC	ER RESEARCH
	3.1	Investigating the Epigenetic Basis of Chemotherapy Resistance in Colorectal Cancer
	3.2	Investigating the Impact of Vascular Remodelling in Risk for Metastasis During Cancer Progression and Treatment
	3.3	Translational Regulation of Innate Immune Response in Cancers25
	3.4	Investigating the Impact of Commonly Occurring Blood Cancer Mutations on Innate Immune Signalling
	3.5	Identifying Cancer Vaccine Targets in Azacitidine-Treated AML29
	3.6	Why Does a Cancer Susceptibility Locus Differentially Influence Risk of Male Versus Female Breast Cancer
4.	RESPI	RATORY MEDICINE
	4.1	Exploration of Therapeutic Potential of the Engineered Mesenchymal Stem Cells Exosomes in Pre-Clinical Models of Acute Respiratory Distress Syndrome (ARDS)
5.	IMMU	INOLOGY AND MICROBES

Contents

	5.1	Investigating the Role of Gut-Derived Short-Chain Fatty Acids in Macrophage Response to <i>Non-Typeable Haemophilus Influenzae</i> and Therapeutic Manipulation by Novel Drug Delivery Systems	.35
	5.2	Defining the Role of Host Proteins in Rhinovirus Replication	.36
	5.3	Probing the Signal Transduction Mechanisms Involved in Neuroinflammation Induced by Astrocytes in Response to Substance P	.37
	5.4	Parasite-Derived Peptides as Regulators of Inflammation and Infection	. 38
	5.5	Elucidating the Mechanisms of GREM1-Mediating Cancer Cell Signalling in Colorectal Cancer	. 39
	5.6	Dissecting the Regulation of Antibacterial Responses of Immune Cells Role by Protein Glycosylation	.40
	5.7	Dissecting the Antimicrobial and Anti-Eukaryotic Weapons of the Human Pathogen <i>Klebsiella Pneumoniae</i>	.41
	5.8	To Investigate the Role of Histamine in the Regulation of Neutrophil Phagocyto	osis . 42
	5.9	Love/Hate Relationship of Achromobacter Species and Human Macrophages: Unravelling a New Model Opportunistic Pathogen	.43
	5.10	Exploiting the Protein O'Glycosylation Pathway in Opportunistic Bacteria as a Novel Antimicrobial Target	.45
	5.11	Bacterial Lipocalins: Novel Role in Bacterial Protection Against Antibiotic- Induced Membrane Lipid Peroxidation	.48
	5.12	Macrophage-Bacteria Interactions in Cysctic Fibrosis: The Cellular Microbiolog of the Novel Opportunistic Bacterium Achromobacter Species	y .50
	5.13	Elucidation of Innate Immune Responses to Respiratory Virus Infection in Airw Epithelium as a Function of Age	ay .52
	5.14	Using the Immune System to Repair Tissue Damage in the Brain	.53
	5.15	Generating and Validating a Novel Human 3D-Brain Cell Culture System as a to for Neuro-Immune Research	ol . 55
	5.16	Deciphering the Role of the E3 Ubiquitin Ligase Pellino-2 in COPD	.56
6.	ORAL	HEALTH	. 57
	6.1	ExPloring the oRal health care needs of older pEople Living with neUrodegenerative Disease at homE (PRELUDE)	.58
	6.2	Addressing Oral Health for Older Adults in Care Homes	. 59
	6.3	Exploring the Potential Oral Health Benefits of Indigenous Medicinal Plants as Alternatives to Antimicrobials	.60
7.	EYE HE	EALTH	.61
	7.1	Optimising Delivery of Ophthalmology Services	.62
	7.2	Identifying Novel Biomarkers and Risk Factors for Age-Related Eye Disease	.63
8.	DRUG	DELIVERY AND BIOMATERIALS	.64

8.1	3D-printed Implantable Long-acting Drug Delivery Systems for the Treatment of Chronic Conditions
8.2	Development of 3D-printed Intra-Oral Devices for the Treatment of Dry-Mouth 66
8.3	Innovative Long-acting Drug Delivery Systems for Treating Ocular Diseases67
8.4	3D Printed Based Drug Delivery Systems for Local Treatment of the Oral Cavity .68
8.5	Regulation of CaaX Protein Processing69
8.6	Does One Size Fit All for Antimicrobial Delivery Via Nanoparticles?70
8.7	Relationship Between Antibiotic Therapy and Development of Antimicrobial Resistance in Patients with Bronchiectasis and COPD71
8.8	4D Printing Technologies in Cancer Therapeutics72
8.9	Design and Evaluation of a Bone-on a-Chip Microfluidic Device73
8.10	Design of Novel Mucoadhesive Lubricants for the Treatment of Xerostomia and Xerostomia-induced Infection74
8.11	Development of Novel Mucoadhesive Drug Delivery Platforms Containing Antimicrobial and Anti-Inflammatory Agents Designed for the Improved Treatment of Periodontal Disease
8.12	Development of Novel Topical Strategies for the Treatment of Xerostomia76
8.13	Dip-coating Using Silicone Elastomer Dispersions as a Strategy for Preparing Reservoir-type silicone Elastomer Vaginal Rings for HIV prevention77
8.14	Novel Statin Formulations for Treatment of Bacterial Vaginosis78
NANO	MEDICINE AND BIOTHERAPEUTICS
9.1	Peptide-based Nanoparticles for Brain-targeted Gene Delivery80
9.2	Infection-Responsive Coatings for the Prevention of Medical Device-Associated infections
9.3	Designing Next-generation Urinary Catheter Materials for Clean Intermittent Self- catheterisation Through Control of the Urinary Microbiome
9.4	Enzyme-triggered Injectable Peptide Hydrogels for the Prevention of Latent Tuberculosis
9.5	Peptide-like Hydrogels as a Long-acting Multipurpose Drug Delivery Platform for Combined Contraception and HIV prevention
9.6	Smart Enzyme-triggered Injectable Peptide Hydrogels for the Prevention of Malaria
9.7	Investigating Relationships Between the Gut Microbiome and the Metabolism of Commonly Prescribed Drug Compounds86
9.8	Nanoparticle Delivery of Antibiotics for Treatment of Pulmonary Infection87
9.9	Characterisation of Novel Therapeutic Targets for the Treatment of Tumour
	Metastasis
9.10	Bacteriophage Control of Oral Microbiota for the Prevention and Treatment of Oral Disease

9.

10. C	CARDIOVASCULAR MEDICINE		
10	0.1	Engineering the Future: Vascularized Cardiac Organoids as a Platform for Studying Diabetic Cardiovascular Complications	91
10	0.2	Overwriting Blood Vessel Identity to Prevent Coronary Graft Failure	92
10	0.3	Neuronal vs Vascular Clock Disruption in Early Diabetic Retinopathy	94
CONTACT INFORMATION			
Postgraduate Research Solutions Centre (PGRSC)			95
Location			
P	PGRSC Contact Details		

FACULTY AND SCHOOL STRUCTURE

Queen's has three Faculties and a total of 15 Schools, each lead by a Head of School. Where projects are available, the order they appear within this booklet follows this structure.

Figure 1: Faculty and School Structure

FACULTY OF MEDICINE, HEALTH AND LIFE SCIENCES

1. MEDICAL EDUCATION

1.1 "So What Happens After we Simulate?": A Qualitative Inquiry into the Experiences of Medical Students Following SBE Activities on their Professional Development

Supervisor	Dr Andrew Spence and Professor Gerry Gormley
Project Overview	Simulated-based education (SBE) is widely utilized in medical education as
	a form of experiential learning. Often employed to enhance High Acuity Low
	Opportunity (HALO) skills, such as managing cardiac arrest or mental health
	crises, much of the existing research has focused on refining the 'teaching
	tool 'of simulation. However, a broader perspective is necessary to
	understand the impact of SBE on learners and how it influences (or not)
	their competences and professional development. In this proposed PhD
	project, our aim is to explore medical students' experiences in SBE and its
	impact on their professional development as they integrate these
	experiences with other forms of clinical learning, especially work-based
	learning (WBL). The findings of this research hope to not only guide the
	optimal delivery of SBE learning opportunities but also highlight how it can
	be integrated with other forms of experiential learning, such as WBL.
Project Description:	This qualitative study will consist of three distinct phases:
Detailed description of	• The successful candidates will critically examine the concept outlined
the project	above and conduct an appropriate literature review.
	• Conduct a qualitative inquiry into the experiences that medical students
	gain from SBE activities and their impact on professional development.
	The methodologies (e.g. cGT) used will depend on the outcomes of
	Phase 1, with a longitudinal approach likely, such as using audio diaries.
	• Undertake a study that provides guidance on the practical
	implementation of the findings into educational practice and policy.
	Methodologies such as Interpretive Descriptive methodology or
	participatory research methodologies will be considered.
	Given the qualitative nature of this research, especially the critical thinking
	required, candidates must be highly motivated, possess a strong command
	of English, and ideally have a pre-established interest in simulation-based
	education.
Project Keywords	Simulation; Education; Work-based learning; Professional development;
	High Acuity Low Opportunity; Longitudinal

2. PUBLIC HEALTH

2.1 Digitalovigilance – Discovery and Management of Adverse Reactions in Digital Health Interventions

Supervisor	Dr Guillermo Lopez Campos
Project Overview	The aim of this project is to determine whether biomedical informatics
	solutions can be developed to identify, characterise, and predict adverse
	and unexpected events derived from the use of Digital Health interventions
	to ensure patient safety and a safe development of digital health.
Project Description:	Digital therapeutics (DTX) offer patients evidence-based therapeutic
Detailed description of	interventions that are delivered through high-quality software programs.
the project	Similar to drugs or other treatments they aim to cure, manage, or prevent a
	disease and they are tested on selected volunteers and patients prior to
	market launch to verify their efficacy and safety. DTX effectiveness of use
	must be proven through systematic clinical trials that assess the outcome in
	controlled settings to reduce bias. However, assessment of their potential
	safety has not been investigated so extensively.
	This project aims to address the lack of research on harm and the adverse
	effects of digital therapeutics and to develop "digitalovigilance" as a new
	research area for collecting, detecting, assessing, monitoring, and
	preventing adverse effects caused by digital health interventions. More
	specifically, the objectives are:
	1. To identify potential unintended consequences of digital health interventions.
	2 Aggregate information on unintended consequences of technology as
	digital health interventions that were assessed separately.
	3. To develop a framework for assessing such consequences as part of
	clinical trials and reporting guidelines to ensure that these
	consequences are reported in a systematic, standardized manner
	To successfully address these objectives, we will combine and develop new
	health informatics solutions.
Project Keywords	Digital Health, Health Informatics, Artificial Intelligence, Adverse effects

2.2 Nutrigenomic Investigation of Cognitive Outcomes in the Northern Ireland Cohort of Longitudinal Ageing

Supervisor	Dr Gareth McKay
Project Overview	Please see Project Description below.
Project Description:	Aims and Purpose: Previous prospective and cross-sectional studies have
Detailed description of the project	identified associations between serum antioxidant levels and cognitive outcomes. Supplementation and dietary intervention have provided contrasting support for the beneficial effects antioxidants may provide in protecting against cognitive decline. Genetic variants in several metabolic pathway genes have been shown to attenuate antioxidant levels. We seek to investigate if underlying genetic and epigenetic variants influence antioxidant levels and subsequent decline in cognitive function
	Background: Multiple neuropathological processes underlie cognitive decline with increased age, a process influenced by modifiable (e.g. lifestyle) and non-modifiable (e.g. genetic) risk factors. The brain is especially vulnerable to reactive oxygen species as neurons possess relatively low levels of endogenous antioxidants to offset their high metabolic activity. This antioxidant deficit leads to oxidative damage of major cell components and elevated inflammation leading to neuronal cell death. Nutritional factors may prove beneficial for retaining healthy cognitive function, but the influence of dietary carotenoids remains unclear. Despite numerous studies exploring whether lower antioxidant levels are associated with reduced cognitive function, findings have been inconsistent, in part due to insufficient consideration of potential confounder factors and insufficient understanding of the underlying molecular influences.
	Previous studies have shown vitamin E (VE) bioavailability is modulated, in part, by a combination of polymorphisms in at least 11 genes, accounting for up to 82% of genetic variation present. These genes are involved in the complex interactions that underlie antioxidant intake, absorption efficiency, blood clearance (e.g., liver secretion and tissue assimilation), utilisation and catabolism. As such, the therapeutic potential of antioxidant supplementation or dietary intervention is dependent on an individual's underlying genetic architecture. Therefore, improved understanding will enable a stratified approach to progress interventional study design and enhance the potential effects on the primary outcome.
	Preliminary results: Previously, we reported antagonistic interactions between VE isoforms that may alter functionality and bioavailability, highlighting concerns for clinical trials investigating VE supplementation. ¹ Furthermore, APOE status has been shown to influence antioxidant status and we previously reported significantly lower alpha-tocopherol and higher gamma-tocopherol by APOE status, with APOE2 characterised as more neuroprotective.
	Plan of investigation: We will evaluate antioxidant levels, including retinol, α -tocopherol, γ -tocopherol, and six carotenoids (α -carotene, β -carotene, β -cryptoxanthin, lutein, lycopene, zeaxanthin), in 3,000 well characterised participants of the Northern Ireland Cohort of Longitudinal Ageing

	 (NICOLA). We will use previously collected data from validated food frequency questionnaires, together with genome-wide and epigenome-wide association data to evaluate (epi)genetic variation associated with antioxidant status and measures of cognition. We hypothesize that molecular variation in older populations may influence serum antioxidant levels which in turn may impact cognitive outcomes.
	Aim 1: Evaluation of antioxidant profiles with cognitive function in NICOLA participants. Statistical approaches will include data comparisons using Pearson correlation coefficients and Bland-Altman plots in combination with cognitive measures (MMSE and MoCA) and regression analyses with adjustment for potential confounders.
	Aim 2: Identification of genetic and epigenetic variants associated with antioxidant status from NICOLA participants (Illumina Infinium CoreExome chip; ~550k variants and the Infinium MethylationEpic array [~850k methylation sites]) have been imputed and available for mixed model linear regression analyses with adjustment for confounders and population stratification. Major developments in methods for deriving causal inference through instrumental variable analysis such as Mendelian randomisation approaches will be adopted. With 3,000 study participants we can detect as statistically significant at the 5% level, a correlation coefficient of 0.2 or greater with over 90% power (PASS: Power Analysis and Sample Size. Kaysville, Utah). Independent replication and validation will be facilitated through ongoing collaborations.
Project Keywords	Nutrigenomics; healthy ageing; antioxidants; cognitive health; vitamins; genetics; methylation

2.3 Multiomic Signatures Associated with Healthy Ageing and Age-related Conditions

Supervisor	Professor Amy Jayne McKnight
Project Overview	Age-related diseases increase in prevalence as populations get older. They are expected to bankrupt the UK national health service if the current rates continue. There is an urgent need to identify biomarkers that predict health and disease across the lifecourse, with a focus on enabling identification of persons most a risk of developing disease, earlier detection of disease, and improved understanding of how diseases develop considering inherited features alongside the impact of where each person is born, lives, and works. We know that people who are poorer, less educated, and who experience more adverse life circumstances experience accelerated biological ageing that is associated with an earlier onset of age-related diseases such as diabetes, cardiovascular disease, and kidney disease.
Project Description: Detailed description of the project	This project leverages existing large-scale datasets to identify multiomic signatures associated with healthy ageing and diseases that are common in in older populations. There is scope for the successful student to generate new laboratory data, learning both wet-lab and complementary <i>in silico</i> analytical approaches, or to focus purely on an artificial intelligence training track that will enable them to be competitive employment in a range of fields.
Project Keywords	Ageing, public health, healthy ageing, artificial intelligence

2.4 Innovative Multiomic Approaches to Improve Early Detection and Diagnosis of Rare Kidney Conditions: A Transdisciplinary Approach

Supervisor	Professor Amy Jayne McKnight
Supervisor Project Overview	 Professor Amy Jayne McKnight Background: Rare kidney diseases are life changing, invisible and underfunded conditions. Around 50-75% of rare kidney diseases occur in children and they are the cause of almost all cases of kidney failure in children; in adults they contribute to about 10% of kidney failure. In children, kidney failure causes early cardiac death. Sadly, kidney transplant is not the ultimate cure, more life years are spent attached to a machine than with a functioning transplant and the quality of life of a child with kidney failure is worse than many other long term childhood conditions. NI has a strong track record of >50 years of kidney research. Prof McKnight has secured ~£30m in research funding with >130 publications and collaborates extensively with wet-lab experimental and computational technology companies. Identifying biomarkers for kidney disease has been a core focus of Prof McKnight's research for 20+ years, more recently focused on identifying multiomic signatures for rare conditions. She is driving using artificial intelligence tools to make best use of the sheer
	amount of data available for multiomic analysis. This project will be co- supervised by colleagues in Artificial Intelligence.
Project Description: Detailed description of the project	Aim: To interrogate large-scale multiomic datasets applying innovative analytical approaches to improve early detection and diagnosis of rare kidney conditions.
	Objectives:
	 To access and clean data from existing and novel resources (including from Genomics England and Our Future Health) for >6 million individuals across the UK. Comprehensive biochemical and molecular (genetic, epigenetic, transcriptomic) biomarker data will be linked to hospital episode statistics, mental health services data, imaging data, rare disease registry data, rare kidney registry data, COVID-19 data, mortality data, electronic healthcare records, and (more limited) primary care data. GeL are delivering the Newborn genomes programme (commencing 2024) conducting whole genome sequencing to identify ~250 rare conditions at birth, which provides further opportunities, time permitting. To help characterise rare kidney conditions based on molecular and imaging data To apply multi-modal analytics to help detect and diagnose rare kidney
	conditions, exploring the potential clinical use for early detection, improved classification, and diagnostic testing.
	4) The successful student will benefit from multi-disciplinary and cross- sectoral expertise building a professional network and gaining transdisciplinary training in an area of skills shortage. They will be equipped to work at the academic/industry interface supporting their future career competitiveness and mobility.
Project Keywords	Rare disease, diagnosis, genetics, artificial intelligence
	· · · · · · · · · · · · · · · · · · ·

2.5 Improving Diagnosis and Treatment for People Living with Rare Diseases

Supervisor	Professor Amy Jayne McKnight
Project Overview	More than 450 million people across the world live with rare diseases and
	significant unmet health and social care needs. On average, RD patients in
	the UK experience three misdiagnoses, attend multiple medical specialities,
	with many never obtaining a name for their condition. NHS costs for
	patients with undiagnosed RDs was >£3.4 billion in the 10 years prior to
	diagnosis. Many RDs are chronic, complex conditions; ~70% of RDs affect
	children; >60% of children who die <15 years have a RD. Many RD diagnoses
	are effectively invisible to national data systems.
Project Description:	There are opportunities for dedicated students to conduct research using
Detailed description of	rare disease registry data, including high-quality, UK-wide real-world
the project	population-based data, to help establish a virtual community of practice for
	rare disease, to develop patient reported outcomes for rare diseases, to
	support patients to participate in clinical trials for rare diseases, or to focus
	on research that enables access to orphan drugs.
	For evenue Whele concerns and evenue conversion are increasing
	For example, whole genome and exome sequencing are increasing
	approaches such as opigopotics and transcriptomics are boloing drive up the
	diagnostic vield. We established a collaborative academic-clinical 'gene
	discovery' clinic for natients with undiagnosed rare diseases in NI which
	uses multiomic approaches to maximise opportunities for diagnosis
	However, even with a diagnosis, treatment options are limited. New gene
	therapies are emerging, which require correct molecular diagnosis before
	the patient can access the therapies, which is proving problematic for
	conditions where genetic testing is not routine or waiting on consultant
	appointments has long waiting times. Many novel drugs take >10 years to
	market so re-purposing of drugs already licensed for use in another disease
	is an attractive option for rare diseases. New approaches are also required
	to optimise trials to deal with the often paediatric onset, often severely life
	limiting rare conditions where there are a restricted number of participants
	and limited molecular diagnoses or natural history information. Emerging
	options such as adaptive and / or decentralised clinical trials and using real
	world data offer promising opportunities for rare disease researchers and
	patients.
	Rare-disease researchers pioneer a unique approach to clinical trials
	Nature Medicine
Project Keywords	Rare disease, diagnosis, orphan drug, clinical trial, artificial intelligence

2.6 Psychiatric-onset Dementia with Lewy Bodies in a Mental Health Inpatient Cohort

Supervisor	Dr Joe Kane
Project Overview	The prodromal phase of dementia with Lewy bodies (DLB), which is the second most common form of neurodegenerative dementia, is hypothesised to comprise of three phenotypes(1). Only one of these phenotypes, mild cognitive impairment with Lewy bodies (MCI-LB), has diagnostic criteria and has been studied in biomarker-enriched longitudinal observational studies. Psychiatric-onset DLB (poDLB), in which late-onset psychiatric illness such as psychosis, depression and anxiety disorders represent another hypothesised prodromal DLB phenotype.
Project Description:	There is a comparative paucity of evidence on poDLB(2). A 2010 survey of
Detailed description of the project	people living with DLB in USA found that over 10% of respondents were initially treated for depression, psychosis or another functional psychiatric illness, before eventually being diagnosed with DLB; over 30% of respondents engaged with healthcare services for two or more years before being diagnosed(3). Accurate and timely diagnosis is no less crucial for poDLB than with MCI-LB, particularly as commonly prescribed psychiatric medications can be harmful, and even lethal, in DLB(4). As both DLB and MCI-LB are thought to be comparatively poorly detected in routine clinical care(5), this is also likely to be the case, perhaps to an even greater extent, for poDLB.
	Aims This project aims to determine the prevalence, clinical phenotype and disease progression of poDLB in a cohort of older people (>55 years) admitted to inpatient care for late-onset psychiatric illness. It will use a prospective cohort study design in which patients admitted to a mental health inpatient unit over one year, along with matched cognitively and psychiatrically healthy controls, are systematically screened at baseline and followed up over two years.
	Method All patients admitted to the Belfast Health & Social Care Trust Acute Mental Health Inpatient Centre (AMHIC) over a 12-month period for late-onset psychiatric illness will be approached for consent to participate. We estimate this to be 60-80 individuals. Patients diagnosed with neurodegenerative illness or those with established MCI will be excluded. Consent will also be sought to approach next of kin, or another healthy relative, to act as a control. As an inpatient, established measurements of cognition, parkinsonism (MDS-UPDRS), REM sleep behaviour disorder (MSI), fluctuations and other symptoms recognised as associated with DLB will be administered and clinical and neuroimaging data retrieved from patients' notes. The same scales will be repeated 12 and 24 months following recruitment.
	Expected outcomes

	We expect to demonstrate that few, if any patients are diagnosed with poDLB in the mental health inpatient environment, but that DLB-associated symptoms are more common than in matched controls. Cognitive and functional impairment, as well as progression in DLB-associated symptoms, will increase in 10-20% of cases when compared with controls.
	 References 1. McKeith IG, Ferman TJ, Thomas AJ, Blanc F, Boeve BF, Fujishiro H, et al. Research criteria for the diagnosis of prodromal dementia with Lewy bodies. Neurology. 2020;94(17):743–55. 2. Gunawardana CW, Matar E, Lewis SJG. The clinical phenotype of psychiatric-onset prodromal dementia with Lewy bodies: a scoping review. J Neurol. 2024 Jan 1;271(1):606–17. 3. Galvin JE, Duda JE, Kaufer DI, Lippa CF, Taylor A, Zarit SH. Lewy body dementia: The caregiver experience of clinical care. Parkinsonism and Related Disorders. 2010 Jul;16(6):388–92. 4. Aarsland D, Perry R, Larsen JP, McKeith IG, O'Brien JT, Perry EK, et al.
	 Neuroleptic sensitivity in Parkinson's disease and parkinsonian dementias. The Journal of clinical psychiatry. 2005 May;66(5):633–7. Surendranathan A, Kane JPM, Bentley A, Barker SAH, Taylor JP, Thomas AJ, et al. Clinical diagnosis of Lewy body dementia. BJPsych Open. 2020;6(4).
Project Keywords	Neurodegenerative disease; mental health; dementia; movement disorders; psychiatry

3. CANCER RESEARCH

3.1 Investigating the Epigenetic Basis of Chemotherapy Resistance in Colorectal Cancer

Supervisor	Dr Yaser Atlasi
Project Overview	The Atlasi research group is dedicated to studying stem cell and cancer epigenetics. Specifically, we investigate the interplay between cell signalling and chromatin regulation in stem cells, as well as how these mechanisms are deregulated in cancer, including the development of chemotherapy resistance in tumours. We employ various stem cell models, such as embryonic stem cells and tissue-derived organoids, along with cutting-edge genomics, proteomics, and computational biology approaches. Our goal is to make fundamental discoveries that can ultimately address significant health challenges in society.
	The Atlasi lab comprises 1 postdoctoral researcher, 4 PhD students, 1 MSc student, and 1 BSc student. The lab is funded by research grants from the Medical Research Council (MRC), the Royal Society, Breast Cancer Now, and Leukemia Lymphoma NI (LLNI).
Project Description: Detailed description of the project	Treatment with 5-fluorouracil (5FU)-based chemotherapy is the main option for most colorectal cancer (CRC) patients. However, chemotherapy resistance remains a major hurdle in CRC treatment. Recent discoveries highlight a remarkable similarity between chemo-resistant cancer cells and cells found in the early embryo, suggesting that cancer cells can hijack a range of stem, and embryonic programmes to enter a dormant state that enables them to survive treatment. This drug resistance-persistence state is associated with reversible epigenetic reprogramming allowing cells to reinitiate tumour growth upon drug release. In this project, we aim to identify the reversible epigenetic changes underpinning cell plasticity in response to 5FU treatment, with a particular focus on transcriptional enhancers s. Better understanding of these epigenetic mechanisms will provide new therapeutic approaches to prevent or overcome drug resistance in cancer.
	We have recently conducted multiple genomics approaches to understand the epigenetic basis of drug resistance in CRC. Through this research, we have identified several candidate epigenetic regulators that may play key roles in this process. In this project, the PhD student will utilize state-of-the- art CRISPR/Cas9 and genomics approaches to study the role of these candidate epigenetic regulators identified in our genomics screens. All proposed experiments are standard molecular biology approaches that have been used before by the lead PIs, mitigating the feasibility concerns. Furthermore, this project does not have a pre-defined outcome and both positive and negative results regarding identified epigenetic regulation in drug resistance.

	The candidate PhD student will receive training in multi-disciplinary approaches combining genome-wide technologies, stem cell biology (including organoid culture) and various molecular biology techniques. The PhD candidate will also gain experience in computational biology for analysis of genome wide data.
Project Keywords	Epigenetics, colorectal cancer, therapy resistance

3.2 Investigating the Impact of Vascular Remodelling in Risk for Metastasis During Cancer Progression and Treatment

Supervisor	Dr Cristina Branco
Project Overview	The Branco Group is interested in metastatic disease, and how certain
	organs become hospitable to disseminated tumour cells to allow the growth
	of secondary tumours, in turn responsible for the large majority of cancer
	associated mortality. There is no treatment for metastatic cancer, and those
	used to treat primary tumours are not only ineffective in controlling
	metastases, but also carry adverse effects responsible for life changing
	morbidity; furthermore, recent reports suggest some treatments may
	indeed potentiate metastasis. Our research focuses primarily on triple
	negative breast cancer (TNBC) which is the most metastatic of all breast
	cancer subtypes. There are no targeted therapies for TNBC, due to their
	normone receptor negative status, and treatment relies primarily in
	cytotoxic, systemic chemotherapy. Such treatment is delivered to the
	tumours through the blood stream, and have significant effects on vascular
	(capillaries) and the building blocks of these unique vessels; endethelial colls
	(EC) EC behaviour regulates vascular permeability and vessel perfusion
	impacting nutrient delivery and thus organ homeostasis. We have shown
	that EC activation state is mediated by HIE transcription factors and this is
	isoform- time- and organ-specific (Branco-Price et al. 2012: Reiterer et al.
	2019: Reiterer et al. 2022), with HIF-1a exerting a pro-metastatic effect, and
	HIF-2a anti-metastatic, in preserving vascular integrity.
Project Description:	Preliminary data recently obtained in our group shows that exposure to
Detailed description of	chemotherapy significantly alters EC status, including by dramatically
the project	decreasig the levels of the vasculoprotective HIF-2a isoform. This results
	also in a decrease in EC-EC adhesion and loss of barrier function.
	Additionally, the viability, angiogenic potential, secreted factors and
	intercellular communication is altered. More importantly, these responses
	are organ-specific and mirrored in vivo.
	Aims: The microenvironment of a metastatic organ is essential for
	disseminated tumour cells to survive and proliferate, and the organ-specific
	microvasculature has a critical role in the traffic of tumour cells from their
	site of origin to other tissues, as well as nutrients and signals exchanged
	eliminating the (metastatic) tumour cells this project aims to elucidate how
	microvascular cell adaptations to tumour-derived signals and standard of
	care therapy affect the dissemination frequency and outgrowth of
	metastatic lesions. Additionally, we aim to understand to what extent
	vascular parameters influence organotropism: where metastasis are more
	likely to form. To that end, this project will: (1) explore how ECsrespond.
	adapt and/or recover from tumour-derived signals and treatment
	cytotoxicity; (2) Compare the effects of tumours and treatments on
	microvascular remodelling in metastatic and non- metastatic organs, to
	reveal both vulnerabilities and resilience properties, which would

	potentially uncover (3) opportunities for intervention during TNBC
	treatment, that would protect tumour-free organs from metastatic disease.
	Models and experimental approaches: our group uses a combination of ex
	vivo (primary cells from murine and human origin, to confirm relevance of
	EC responses in human cells; this is complemented by using pre-clinical in
	vivo models or TNBC, which allow contextualising cells responses in
	complete, relevant and translational models of disease. This project will use
	a broad range of techniques, from standard tissue culture, western blotting,
	immunofluorescence, co-cultures and live cell assays, including migration,
	angiogenesis, permeability, metabolic assays. We will assess and validate
	cell signalling using secretome screens and ELISA assays, validated by flow
	cytometry and whole tissue multiplex immunofluorescence. Several core
	facilities in our centre , including Advanced Imaging, Histology, Flow
	Cytometry and Genomics, are in place to support and enable the delivery of
	these aims.
Project Keywords	Metastasis, triple negative breast cancer, metastatic niche, treatment
	resistance, treatment failure

3.3 Translational Regulation of Innate Immune Response in Cancers

Supervisor	Dr Seyed Mehdi Jafarnejad
Project Overview	The innate immune system plays a significant role in cancer. The mRNA
	are synthesized only when necessary and in appropriate amounts. We aim
	to investigate if manipulation of the mRNA translation machinery could
	improve efficacy of anticancer immunotherapy treatments.
Project Description:	The innate immune response is the first line of defence against pathogens.
Detailed description of	providing a rapid and nonspecific reaction to infections. However, this
the project	response must be tightly regulated to avoid premature activation or
	overactivation, which can cause severe damage to the host's tissues and
	lead to chronic inflammation or autoimmune diseases. One of the key
	regulatory mechanisms is mRNA translational control. This process ensures
	that proteins involved in the immune response are synthesized only when
	necessary and in appropriate amounts, thus ensuring that the immune
	system can quickly respond to pathogens while minimizing the risk of
	excessive or inappropriate activation.
	The innate immune system also plays a significant role in cancer, influencing both tumour development and the body's defence against cancerous cells. It can recognize and destroy tumour cells through mechanisms such as the release of pro-inflammatory cytokines.
	The overarching objective of this project is to define the role of translational regulation in the dysregulated immunity in cancer cells. Subsequently, we aim to investigate if genetic or pharmaceutical manipulation of mRNA translation could affect tumorigenicity or improve efficacy of anticancer treatments.
	The outcome of this research could have profound impacts on the design
	and success of immunotherapy approaches to cancer therapy.
Project Keywords	Cancer, immune system, immunotherapy, mRNA translation anticancer
	treatments

3.4 Investigating the Impact of Commonly Occurring Blood Cancer Mutations on Innate Immune Signalling

Supervisor	Dr Katrina Lappin
Project Overview	Myelodysplastic syndromes (MDS) and acute myeloid leukaemia (AML) are clonal haematological malignancies that can disrupt normal haematopoiesis
	of multiple myeloid lineages. MDS/AML are frequently diagnosed in the
	and/or cytogenetic abnormalities accompanied by peripheral blood
	cytopenias. Due to the age group affected, treatment can be difficult due to
	the frailty of the patient and the toxicity associated with therapies currently
	used. The successes of graft-vs-leukaemia observed following allogeneic
	hematopoletic stem cell transplant (HSCI) supports the value
	mediating immune activation or evasion in cancer are becoming apparent
	This study will identify some of these pathways in a myeloid malignancy
	setting and explore the value of using targeted-drugs in combination with
	immunotherapies for the treatment of MDS/AML.
	The purpose of this research is to explore immune activation in myeloid
	malignancies, investigating the role of commonly occurring mutations in
	immune signalling in a blood cancer setting.
Project Description:	Purpose: The purpose of this research is to explore immune evasion
Detailed description of	mechanisms in myeloid malignancies. Aims: i) Deciphering the role of
the project	additional nathways playing a role in immune evasion, iii) Assess the efficacy
	of targeted therapies approved for use in AML on immune activation and in
	combination with immune checkpoint inhibitors.
	Background: Muclodycolastic syndromos (MDS) and asuto mucloid
	leukaemia (AML) are clonal haematological malignancies that can disrupt
	normal haematopoiesis of multiple myeloid lineages. MDS/AML are
	frequently diagnosed in the older population with a median age of onset
	>60 years. They are characterised by molecular and/or cytogenetic
	abnormalities accompanied by peripheral blood cytopenias (PMID:
	the fitness of the national and the toxicity associated with therapies currently
	used. ICIs as monotherapy or in combination with hypomethylating agents
	are being explored in clinical trial in the relapsed/refractory AML space,
	however the results have been underwhelming and this is due to a lack of
	combinations of ICIs with immune modulating drugs and/or a lack of
	commonly occurring gain-of-function (GoE) mutations which can upregulate
	immune signalling when treated with anthracyclines (also now accepted as
	agonists for cancer cell intrinsic immune signalling), paving the way for
	these specific mutations to be used as biomarkers to stratify patients into
	ICI treatment groups. To date, we have shown that when SF3B1 and SRSF2
	are mutated (common in MDS/AML) can promote innate immune signalling
	(Fig.A). Additionally, we have identified some previously unexplored

mechanisms of immune evasion by the AML blast cells. We performed an esiRNA screen of the genes included in the CROP-seq experiment and used an immune cytokine ELISA readout of activation of innate immune signalling. This screen was performed with and without an anthracycline, to see which genes when lost can switch immune signalling off or on, respectively (Fig.B). This has highlighted a possible role for FLT3, IDH2 and EZH2 GoF mutations in immune evasion of MDS/AML cells. Additionally, midostaurin (FLT3), quizartinb (FLT3), enasidenib (IDH2) and tazometostat (EZH2) are now in clinical use for the targeted treatment of MDS/AML harbouring these mutations. When we used these agents to treat cell line models in combination with low dose anthracycline (used clinically as standard-of-care for high-risk MDS and AML), we observed significant upregulation in the transcription of innate immune gene, CCL5 (Fig.C), and secretion of CCL5 (RANTES) (Fig.D) compared to single agents. These data highlight the possibility to generate novel therapeutic combinations to improve the functionality of ICIsin MDS/AML and improve the results seen in clinical trial.

Brief outline plan of investigation:

WP1 – Deciphering the role of mutant FLT3, IDH2 and EZH2 in MDS/AML immune evasion.

WP2 – Identifying further AML pathways involved in immune regulation/evasion.

WP3 – Immune competent in vivo validation of targets from WP1 and WP2 using the chicken egg chorioallantoic model.

Figure 1 – Immune biology in myeloid malignancies. (A) GSEA showing enrichment of inflammatory pathways associated with the frequently occurring in MDS/AML SF3B1-K700E mutations. (B) esiRNA screen of the most commonly mutated MDS/AML genes with (red) and without (black) an anthracycline. (C-D) Validation of targets from (B) using targeted therapies to reduce activity of mutant protein to recapitulate the

	knockdown from (B) investigating CCL5 transcription (C) and secretion (D). N=3 biological replicates, paired T-tests performed.
Project Keywords	Blood cancers (myelodysplastic syndromes and acute myeloid leukaemia); Immune activation; Immune evasion; Immune checkpoint inhibitors;
	Genetic screening

3.5 Identifying Cancer Vaccine Targets in Azacitidine-Treated AML

Supervisor	Dr Sarah Maguire
Project Overview	Acute Myeloid Leukaemia (AML) is an aggressive cancer of the bone marrow which disrupts healthy blood production by generating immature and non- functional white blood cells. More than 3,000 people are diagnosed in the UK annually, and 42% of these patients are over 75-years old. While intensive chemotherapy offers a conventional treatment option, its harshness and limited efficacy in specific patient groups, like older adults, necessitates alternative approaches. Azacitidine, a drug that alters DNA methylation patterns, provides a more well-tolerated approach for these patients and is standard of care in combination with venetoclax in this patient group. However, its effectiveness, particularly in TP53-mutant cases, remains limited (Median survival in azacytidine/venetoclax treated AML is 12-18 months), motivating the search for further new well-tolerated treatments which improve outcomes for these patients.
	Cancer cells have unique proteins (antigens) that can be targeted by the immune system. While vaccines are a promising approach to fight cancer, none exist yet for AML. This project aims to identify new antigens on AML cells treated with a specific drug (azacitidine) to develop a potential AML vaccine. This builds on prior research by AilseVax Ltd, a spin-out company from Queen's University Belfast, that currently has over 40 lead antigens under investigation in colorectal cancer. This project proposal will build on this work to investigate whether the leukaemic cells in AML patients treated with azacitidine display new antigens on their surface and whether these targets would be suitable for vaccine development.
Project Description:	To achieve this, the proposed studentship will use cutting edge technologies
Detailed description of	(including short- and long- read RNA sequencing) to explore how AML cells
the project	change on exposure to azacitidine using lab models and samples from azacitidine-treated AMI patients available from the NIBiobank. The student
	will then use the AilseVax AltRNA8V [™] computational cancer antigen
	platform to identify antigens which have the potential to act as new vaccine
	targets. Finally, the student will test how effective these new antigens are
	at priming the immune response using pre-clinical <i>in vivo</i> models, paving
	with azacitidine to patients.
Project Keywords	Acute Myeloid Leukaemia

3.6 Why Does a Cancer Susceptibility Locus Differentially Influence Risk of Male Versus Female Breast Cancer

Supervisor	Dr Nick Orr and Dr Colin Adrain
Project Overview	Background
	Breast cancer is the most commonly occurring and frequently devastating cancer in the UK, yet its aetiology remains poorly understood. Besides age, genetic susceptibility and reproductive factors are the best-established risk factors for the disease. Although mutations in genes such as <i>BRCA1</i> , <i>BRCA2</i> and <i>PALB2</i> are strongly associated with breast cancer predisposition, they account for only a small proportion of cases overall. In fact, most cases occur sporadically under the influence of multiple genetic, environmental and lifestyle factors. However, how these factors impinge on cancer susceptibility at the molecular level, and how they interact with biological gender, remains largely unknown.
	We, and others, have recently identified a germline single nucleotide polymorphism (SNP), rs13066793, that is associated with risk of breast cancer. Intriguingly, the minor allele of rs13066793 is associated with a decreased risk of breast cancer in females, but an increased risk of the disease in men. The SNP localises to the first intron of a gene called <i>VGLL3</i> , which encodes a transcriptional coactivator implicated in development, differentiation and organogenesis. VGLL3 controls the expression of target genes (e.g. cytokines) that are involved in cell proliferation, apoptosis, and tissue homeostasis. Several studies have shown that dysregulation of <i>VGLL3</i> expression can contribute to the development and progression of various types of cancer, including breast cancer, lung cancer, liver cancer. Intriguingly, VGLL3 has recently been implicated in influencing sexual maturation in a sex-biased manner, perhaps explaining the opposite breast cancer risk effects attributed to rs13066793 in males and females.—We hypothesise that VGLL3 expression governs critical yet undefined genderspecific cancer risk mechanisms.
Project Description:	Preliminary data
Detailed description of the project	Our preliminary data indicates that rs13066793 localises to a genomic regulatory element (GRE). We have demonstrated, using reporter assays that the genomic sequence demarcated by rs1306793 has sex-biased functional enhancer activity in breast epithelial cells. The enhancer activity is lost following the introduction of the minor allele of rs13066793. We have also shown, using expression quantitative trait locus (eQTL) analysis, that the minor allele of rs13066793 is associated with reduced <i>VGLL3</i> expression. This, along with our observations from our epidemiology studies, suggests that increased expression of <i>VGLL3</i> is associated with risk of female breast cancer while decreased expression is associated with risk of male breast cancer.
	Aims and objectives In this project we will characterise the genomic mechanisms that influence <i>VGLL3</i> expression. We will also define the role of VGLL3 in mammary development, using state of the art organoid models, while its role in

	crosstalk between mammary cells and the cancer microenvironment will be defined using cell culture and organoid models. We will use CRISPR-based
	genetic perturbation approaches to directly link the GRE to VGLL3. We will
	then identify the VGLL3-associated transcriptional coregulators that bind to
	rs13066793 using SNP-specific DNA competition pulldown-mass
	spectrometry approaches, then use allele-imbalanced DNA pulldown assays
	to detect allele-specific protein binding in different breast-relevant cell
	lineages. CRISPR knockout models and state-of-the-art genomics
	approaches will be used to illuminate the VGLL3-directed transcriptome of
	breast cells thereby nominating key processes and pathways for
	downstream study. Overall, this PhD studentship will reveal substantial
	insights into the molecular mechanisms that underpin gender-specific
	cancer risk factors.
Project Keywords	Breast cancer organoids; Cancer microenvironment; Gender specific cancer
	risk; CRISPR-based genetic perturbation; Cellular crosstalk in breast cancer

4. RESPIRATORY MEDICINE

4.1 Exploration of Therapeutic Potential of the Engineered Mesenchymal Stem Cells Exosomes in Pre-Clinical Models of Acute Respiratory Distress Syndrome (ARDS)

Supervisor	Dr Anna Krasnodembskaya
Project Overview	In this project we wish to develop the novel unique next-generation stem cell therapy product based on MSC exosomes and iPSC technology which will have superior scaling capabilities for GMP manufacturing. Overexpression of specific factor (previously identified by our group) will enable enhanced therapeutic efficacy of MSC EVs through their capacity to more effectively restore mitochondrial function in recipient cells. Given that mitochondrial dysfunction underpins pathophysiology of multiple diseases as well as the process of aging, translational potential of such product is very high. Collectively, this work will enable further translational development of iPSC MSC cell therapy product, new foreground IP and open opportunities for new collaborations with academic, clinical and industrial partners. This project offers exciting training opportunities for early career researcher in the fast developing field of stem cell based therapies.
Project Description: Detailed description of the project	Acute Respiratory Distress Syndrome (ARDS) is a major cause of acute respiratory failure in critically ill patients requiring mechanical ventilation and is associated with high mortality and morbidity. ARDS has no specific pharmacological therapy and advanced therapeutics based on mesenchymal stromal cells extracellular vesicles are rapidly moving towards clinical translation. Previously we demonstrated that mitochondrial dysfunction in the lung tissue significantly contributes to development of severe lung injury in ARDS while Mesenchymal Stromal Cells (MSC) exosomes are able to improve survival and reduce severity of lung injury at least partially through restoration of mitochondrial fitness in the recipient host cells. Interestingly, we have identified that MSC EVs carry mitochondrial transcriptional co- factor which is capable of enhancing mitochondrial biogenesis.
	In this project we aim to develop 'engineered' MSC extracellular vesicles overexpressing this co-factor with the enhanced capacity to modulate mitochondrial function in recipient cells and enhanced therapeutic efficacy in ARDS.
Project Keywords	Mesenchymal stem/stromal cells, exosomes, ARDS, iPSCs, mitochondrial dysfunction

5. IMMUNOLOGY AND MICROBES

5.1 Investigating the Role of Gut-Derived Short-Chain Fatty Acids in Macrophage Response to *Non-Typeable Haemophilus Influenzae* and Therapeutic Manipulation by Novel Drug Delivery Systems

Supervisor	Dr Aoife Rodgers and Professor Cliff Taggart
Project Overview	This project will investigate the effects of microbial-derived short-chain
	fatty acids on macrophage response to non-typeable haemophilus
	<i>influenzae</i> (NTHi), the most common cause of bacterial infection in the lungs
	of COPD patients.
Project Description:	Gut microbial-derived SCFA regulate both local and systemic immune
Detailed description of	responses and more recently, have been demonstrated to affect the growth
the project	of pathogens such as <i>Pseudomonas aeruginosa</i> . ² The levels of SCFA are
	altered in several diseases including chronic obstructive pulmonary disease
	(COPD), ³ however, the impact this has with respect to outcome to infection,
	is currently unknown. Specifically, while it is acknowledged that gut-derived
	SCFA reach the systemic circulation and bone marrow (BM), ⁴ the precise
	mechanistic effects of SCFA on innate immune cells during infection has not
	been defined. This project will investigate the effects of SCFA on
	macrophage response to infection caused by the bacterium <i>non-typeable</i>
	ndemophilus influenzae (NTHI). NTHI is the most common cause of bacterial
	Infection in the lungs of COPD patients and contributes to episodes of acute
	mortality ⁵ Primary murine RM-derived macrophages will be utilised for
	functional and mechanistic in vitro studies in the presence and absence of
	individual and combinations of SCEA to precisely define the signalling
	mechanisms induced/modulated by SCFA. Such studies will be supported by
	<i>in vivo</i> models of bacterial lung infection induced by NTHi. With knowledge
	gained from such studies, novel drug delivery systems will be utilised for
	therapeutic manipulation.
	References:
	1. Morrison, D. J. & Preston, T. Formation of short chain fatty acids by the
	gut microbiota and their impact on human metabolism. <i>Gut Microbes</i> 7 ,
	189 (2016).
	2. Ghorbani, P. et al. Short-chain fatty acids affect cystic fibrosis airway
	inflammation and bacterial growth. <i>Eur Respir J</i> 46, 1033–1045 (2015).
	3. Bowerman, K. L. et al. Disease-associated gut microbiome and
	metabolome changes in patients with chronic obstructive pulmonary
	disease. <i>Nat Commun</i> 11 , (2020).
	4. Boets, E. <i>et al.</i> Systemic availability and metabolism of colonic-derived
	short-chain fatty acids in healthy subjects: a stable isotope study. J
	<i>Physiol</i> 595 , 541 (2017).
	5. Millares, L. & Monso, E. The Microbiome in COPD: Emerging Potential
	tor Microbiome-Targeted Interventions. Int J Chron Obstruct Pulmon Dis
	17 , 1835–1845 (2022).
Project Keywords	Short-chain fatty acids; gut-lung axis; microbiome; drug delivery
5.2 Defining the Role of Host Proteins in Rhinovirus Replication

Supervisor	Dr Aurelie Mousnier
Project Overview	This project will determine, though virology, molecular biology and cell biology techniques, the molecular mechanisms by which specific host proteins, which we identified as pro-viral, facilitate rhinovirus replication in cells. In the long term, this knowledge will enable the design of antivirals against rhinoviruses.
Project Description: Detailed description of the project	Rhinovirus infections are the main cause of common colds and a major cause of exacerbation of chronic respiratory diseases such as asthma or chronic obstructive pulmonary disease (COPD), leading to an acute worsening of symptoms. However, there is currently no vaccine or antiviral treatment against rhinoviruses.
	This project will be part of a programme of research in Dr Mousnier's lab, aiming to precisely understand the molecular mechanisms by which rhinoviruses use host cells to replicate, to design new antiviral strategies. It will build on a current MRC-funded project, in which we found that specific host proteins interact with rhinovirus replication proteins and are important for the replication of the virus. The project will analyse, for the most promising host protein hits, the precise molecular mechanisms involved. This will include the identification of the step of the viral replication cycle where the host proteins play a role and the analysis of the molecular interactions involved and their role in viral replication. Through a range of virology, molecular biology and cell biology techniques, this work will uncover new mechanisms by which rhinoviruses subvert host cells to facilitate their replication. In the long term, this knowledge will be used to design novel antivirals.
Project Keywords	Rhinoviruses, host-pathogen interactions, viral replication, molecular mechanisms

5.3 Probing the Signal Transduction Mechanisms Involved in Neuroinflammation Induced by Astrocytes in Response to Substance P

Supervisor	Dr Bianca Plouffe
Project Overview	Neuroinflammation, a condition associated to excessive cytokine
	production, promotes neuronal death. Astrocytes play a major role in
	neuroinflammation. Substance P stimulates neurokinin-1 receptor (NK1R)
	abundantly expressed by astrocytes leading to cytokine secretion. This
	project aim to identify the transduction mechanisms involved in NK1R-
	mediated cytokine secretion in the context of astrocytes.
Project Description:	Infection to pathogens, neurodegenerative diseases (multiple sclerosis,
Detailed description of	Alzheimer's and Parkinson's diseases), and brain injuries can cause
the project	neuroinflammation, a condition associated to excessive production of
	cytokines promoting neuronal death. Astrocytes, a type of glial cells in the
	central nervous system, play a major role in neuroinflammation. These cells
	express neurokinin-1 receptor (NK1R) and stimulation of NK1R by the
	neuropeptide substance P secreted by injured neurons induces cytokine
	secretion by astrocytes. Although the role of NK1R in cytokine secretion by
	astrocytes is well established, the molecular mechanisms translating NK1R
	activation into this cellular response remains obscure as it mainly occurs at
	endosomes rather than at the plasma membrane.
	The objective of this project is to understand how endecomal NK1P
	The objective of this project is to understand how endosonial NKIK activates puckers $EPK1/2$ and $NEvP$, two major drivers of transcription
	involved in cytokine production, by investigating:
	1 The production of the canonical second messanger diacylolycerol at the
	membrane of endosomes following stimulation with substance P
	2 The role of phosphatidylinositol-3-phosphate (PI3P) the most abundant
	phosphoinositide at the membrane of endosomes as a notential
	substrate for phospholipase CB.
Project Keywords	Neuroinflammation, astrocytes, substance P, signal transduction,
. ,	neurokinin 1 receptor

5.4 Parasite-Derived Peptides as Regulators of Inflammation and Infection

Supervisor	Professor Cliff Taggart and Dr Aoife Rodgers	
Project Overview	Helminth Defence Molecules (HDMs) play an important role in allowing	
	parasites to regulate the human immune response. In this study, we will	
	evaluate the effect of one of these HDM's as a potential treatment for	
	infection and inflammation associated with lung diseases such as Chronic	
	Obstructive Pulmonary Disease (COPD) or Cystic Fibrosis (CF) lung disease.	
Project Description:	Helminth defence molecules (HDMs) are a family of proteins first discovered	
Detailed description of	within the excretory secretory (ES) products of trematode parasites that can	
the project	modulate the inflammatory response. We have demonstrated that some of	
	these peptides also exhibit novel immunomodulatory activity in <i>in vivo</i> and	
	in <i>in vitro</i> co-infection models (<i>Tanaka A et al, J Allergy Clin Immunol. 2018</i>	
	Jun;141(6):2316-2319). The successful student will map the	
	immunomodulatory activity of one of these peptides and evaluate this	
	activity in <i>in vivo</i> models of lung infection and inflammation. The student	
	will also determine the mechanism of action of this peptide using co-	
	incubation models of macrophage and bacteria. In addition, the student will	
	spend time with a medical device company (Aerogen) to determine the	
	ability to nebulise this peptide directly to the human lung (Creane S et al,	
	<i>Eur J Pharm Sci. 2023 Apr 1;183:106398</i>). There will also be the opportunity	
	to spend time in the laboratory of Professor John Dalton (Science	
	Foundation Ireland Professor) in the National University of Ireland, Galway	
	learning novel assays applicable to the project. The successful student will	
	have the opportunity to learn a range of skills including <i>in vivo</i> lung infection	
	and inflammation studies, qPCR, ELISA assays, confocal microscopy and cell-	
	based functional assays. The project outlined above is feasible within the	
	timeframe of the studentship and support will be available from another	
	researcher in the Taggart laboratory working in parallel with the student in	
	a related project.	
Project Keywords	Helminth; nebulise; lung infection; inflammation	

5.5 Elucidating the Mechanisms of GREM1-Mediating Cancer Cell Signalling in Colorectal Cancer

Supervisor	Dr Derek P Brazil
Project Overview	Gremlin1 (GREM1) is a key protein involved in the development and
	progression of colorectal cancer. GREM1 is upregulated in many human
	cancers, including colon cancer, but the mechanisms of how GREM1 drives
	cancer progression are unknown. This project will decipher the mechanisms
	of GREM1 signalling and develop new small molecule inhibitors of GREM1
	as potential novel anti-cancer drugs.
Project Description:	Background
Detailed description of	Gremlin1 (Grem1) is a secreted protein that binds to and antagonizes the
the project	action of bone morphogenetic proteins (BMPs). Grem1 binding to BMPs is
	essential for the normal development of limbs, kidneys and other tissues.
	Apart from its developmental role, Grem1 is an important protein in a range
	of human diseases including diabetic kidney disease, lung fibrosis and
	cancer. High levels of Gremi expression has been shown to act as a
	biomarker for a range of cancers (including colon, brain and liver). Indeed,
	night levels of Grenni expression match with poor patient survival in the
	Grem1 expression contributes to more aggressive tumour development
	Patients with many forms of colon cancer have high levels of Grem1 in their
	tumours. The focus of this project is the to define the cellular function of
	Grem1 in colon cancer and intestinal cells.
	Aims and Objectives
	1. To identify novel GREM1 signalling pathways that contribute to tumour
	growth and cancer formation using colorectal cancer cell culture and
	mouse models
	2. To identify novel GREM1 binding proteins using a proximity
	biotinylation/mass spectrometry approach
	3. To characterise novel GREM1 small molecule inhibitors as potential
	novel anti-cancer drugs
	Coll sulture transfection Western blotting confect microscopy O DCD
	mouse models of colorestal cancer immunabistechemistry smEISH
	luciferase assays
	Expected Outputs
	This 4-year project is designed for an ambitious, hard-working student, who
	can expect 2-3 high impact publications and review articles from their PhD.
	Students will also have the opportunity to present their work at national
	and international conferences.
Project Keywords	Gremlin1, bone morphogenetic proteins, SMAD signalling, intestine
	colorectal cancer, epithelial cells, tumour

5.6 Dissecting the Regulation of Antibacterial Responses of Immune Cells Role by Protein Glycosylation

Supervisor	Dr Gunnar Schroeder
Project Overview	Bacterial infections, driven by rising human populations with health
	conditions, such as diabetes, cause suffering and mortality worldwide. How
	these conditions modulate antibacterial immunity remains poorly
	understood. This project will determine how protein glycosylation, a post-
	translational modification linking protein function and metabolic state,
	regulates the antibacterial capacity of immune cells.
Project Description:	Bacterial infections, a leading cause of suffering and mortality worldwide,
Detailed description of	are exacerbated by increasing antibiotic resistance and growing populations
the project	with health conditions. Macrophages and neutrophils are the first line of
	defence. Recent research highlights the link between immune cell
	metabolism and antibacterial responses, making it a potential target for
	host-directed therapy. However, we still lack a deep understanding of how
	changes in metabolites translate into protein activity and antimicrobial
	capacity.
	Dest translational madifications of a O ClaNA subtion are implicated
	(Chang 2020): however, which proteins are regulated their role in the best
	(<u>chang, 2020</u>), however, which proteins are regulated, then role in the host
	response in and now bacteria counteract this to evade infindite
	The project aims to dissect these mechanisms using interdisciplinary
	approaches, including infection microbiology, immunobiology, microscopy,
	gene-editing, and proteomics. We will
	1. Engineer cells in which we can control protein glycosylation
	2. Perform infections with different pathogens, with and without
	modulation of glycosylation, and determine the antibacterial response
	(pathogen survival, phagocytosis)
	3. Determine the glycoproteomes during infection with wild-type bacteria
	and strains lacking virulence factors
	4. Analyse the effect of glycosylation on the function of selected proteins
	in cell signalling and immune response.
	You will gain hands-on experience and training in experimental design, data
	analysis, and communication skills.
Project Keywords	Microbiology, Immunobiology, Bacterial infection, Host-pathogen
	interaction, Cell biology, Glycobiology, Innate Immune Signalling

5.7 Dissecting the Antimicrobial and Anti-Eukaryotic Weapons of the Human Pathogen *Klebsiella Pneumoniae*

Supervisor	Professor Jose Bengoechea
Project Overview	Klebsiella pneumoniae is recognized as a global threat to human health. This
	project will unveil how <i>Klebsiella</i> antagonizes other microbes exploiting the
	type VI secretion (T6SS) nanoweapon, and identify the conserved toxins
	required for. The project will also characterize which T6SS toxins are used
	to blunt the activation of host defenses.
Project Description:	Klebsiella pneumoniae is one of the pathogens sweeping the World in the
Detailed description of	AMR pandemic. Despite the clinical importance, we lack a complete
the project	understanding of how <i>Klebsiella</i> counteracts the activation of our defences
	and about how <i>Klebsiella</i> is able to compete in polymicrobial niches such as
	the human gut. The Bengoechea laboratory has described and started to
	characterize the type VI secretion system (T6SS) nanoweapon. This is a
	system used by bacteria to antagonize competitors by injecting effectors
	toxins into target species. We did demonstrate its role in antimicrobial and
	anti-fungal competition, and its role in gut colonization. Only recently, we
	have unveiled its role targeting the mitochondria to blunt inflammation.
	Initial bioinformatics approach using artificial intelligence uncovered the
	diversity of T6SS toxins in <i>Klebsiel</i> la and most of them of unknown
	function/activity, offering the unparallel opportunity to discover new
	antimicrobial toxins as well as new toxins targeting cell signalling pathways.
	By probing a collection of 100 strains representing the diversity of <i>Klebsiella</i>
	in terms of AMR and virulence, and 1000 strains from sub–Saharan Africa
	and leveraging a high-throughput assay challenging eukaryotic cells, and
	prey <i>E. coli</i> we will characterize the diverse portfolio of T6SS toxins.
	Subsequent work will dissect the function of the most common T6SS toxins
	found in most strains. This work represents a step-change in our
	understanding on the tools deployed by a human pathogen to flourish in
	polymicrobial human tissues.
Project Keywords	Klebsiella pneumoniae, type VI secretion system, bacteria and anti-
	eukaryotic toxins

5.8 To Investigate the Role of Histamine in the Regulation of Neutrophil Phagocytosis

Supervisor	Dr Karim Dib
Project Overview	Histamine regulates human neutrophil phagocytosis by engaging two histamine receptors, the H2R and the H4R. We proposed that histamine produced during periods of infection may boost neutrophil phagocytosis by engaging the H4R and production of histamine by respiratory pathogens may impair neutrophil phagocytosis by hijacking the H2R.
Project Description:	Background: A hallmark of chronic airways diseases is persistent presence
Detailed description of the project	of respiratory pathogens causing an uncontrolled and overwhelming recruitment of neutrophils to the airways. Normally, recruitment of neutrophils to the airways leads to bacterial clearance, but in these diseases, neutrophils fail to eradicate the pathogens and adversely cause airways damage. What disables the bacterial-killing capacity of neutrophils is only partly known. These respiratory diseases are associated with Gramnegative bacteria synthesizing histamine. Thus, production of histamine may be a strategy used by bacteria colonizing the airways to impair neutrophil phagocytosis.
	regulate neutrophil phagocytosis. 1.1. Investigating the role of the H_4R in intracellular killing of bacteria and phagosome maturation; 1.2. Studying the regulation by histamine of the phagocytic receptors Mac-1; 1.3 Examining the dynamic regulation of the H_2R and H_4R during inflammation; 1.4. Performing quantitative phosphoproteomic analysis of histamine signalling.
	Aim 2: To test the role of histamine in mouse neutrophil phagocytosis in
	vivo. 2.1. Investigating the role of histamine in neutrophil phagocytosis in a
	of the H ₂ R antagonist famotidine in a murine model of <i>P. aeruginosa</i> airways infection.
Project Keywords	Neutrophils, phagocytosis, histamine, histamine receptors, cell signalling

5.9 Love/Hate Relationship of Achromobacter Species and Human Macrophages: Unravelling a New Model Opportunistic Pathogen

Supervisor	Professor Miguel Valvano, Dr Rebecca Coll and Professor Andriana Margariti			
Project Overview	Successful pathogens must overcome innate immune barriers including cells			
	(e.g., macrophages) that engulf and kill bacteria. The biology of pathogen-			
	macrophage interactions in infection-permissive hosts is not well			
	understood. This project will explore the hypothesis that intracellular			
	pathogens engulfed by macrophages, combined with host underlying			
	defects (e.g., Cystic fibrosis), induce a basal proinflammatory state that			
	becomes deleterious to the host.			
Project Description:	This interdisciplinary project will use the emerging opportunistic bacterium			
betailed description of	Achromobacter as a new model system to investigate its infection biology in			
the project	and immune ovasion in normal and CETP defective human macronhages as			
	and infinitute evasion information and Crik-delective numan macrophages, as			
	Achromohacter species are increasingly becoming the dominant bacteria			
	recovered from people with CE (PwCE) including those with end-stage lung			
	disease and from infections in people with other immunocompromised			
	conditions. The Valvano group has discovered recently that: (i)			
	Achromobacter isolates from PwCF and non-CF sources display high-level			
	resistance to last-resort antimicrobial peptides and survive intracellularly in			
	human macrophages, and (ii) intracellular survival leads to proinflammatory			
	cell death by pyroptosis, which depends on a functional bacterial Type-3			
	secretion system (T3SS) engaging the intracellular NLRC4 and NLRP3			
	inflammasomes.			
	ADAC To address the approximation that Ashrensehorten Ture 2			
	AINS-10 address the specific hypothesis that Achromobacter Type 3			
	buman macrophages that result in pro-inflammatory responses and			
	intracellular survival this project will:			
	1) define the bacterial properties enabling intracellular survival,			
	2) elucidate the macrophage cellular responses upon infection, especially			
	concerning the activation of the NLRP3 pathway, and			
	3) establish the role of <i>Achromobacter</i> -induced proinflammatory			
	responses in bacterial clearance vs. bacterial persistence in CFTR-			
	defective macrophages, which will be used as a susceptible host model.			
	This research lies at the interface of molecular/cellular microbiology and			
	inflammation cell biology. Key methods/strategies include: (i) identifying			
	the gene set required for bacterial intracellular survival by high-throughput			
	screen (TnSeq); (ii) elucidating the components of Achromobacter's T3SS			
	and the I3SS secretome (identifying effectors by proteomics); (iii)			
	characterisation of the <i>Achromobacter</i> -containing vacuole (ALV) inside			
	macrophages using state-of-the-art confocal microscopy; (IV) elucidating			
	how the NLRP3 inflammasome becomes activated in human macrophages			

	in response to intracellular Achromobacter; (v) establishing a human in
	cellulo infection model that can be exploited (in future work) for screening
	of molecules to treat cellular inflammation. Pyroptosis will be confirmed by
	detecting processed (active) IL-1 β in cell supernatants, and caspase-1 and
	Gasdermin D (GSDMD) cleavage; (vi) Examining the proinflammatory
	potential of Achromobacter infection in CF-defective macrophages
	developed by gene editing technologies on human immature progenitor
	stem cells (iPSCs).
Project Keywords	Cystic fibrosis, macrophages, bacteria-host interactions, innate immunity,
	human immature progenitor stem cells

5.10 Exploiting the Protein O'Glycosylation Pathway in Opportunistic Bacteria as a Novel Antimicrobial Target

Supervisor	Professor Miguel Valvano
Project Overview	The problem. Antibiotic resistance has become a global health problem of
	epidemic proportions, especially for infections caused by Gram-negative
	exploited to develop new classes of antimicrobial molecules, which could
	work alone or preferably in combination with existing antibiotics. The most
	effective antibiotics target central functions of bacterial cells (e.g., protein
	and cell wall synthesis, DNA replication and transcription). However, post-
	translational protein modifications have not been explored as antimicrobial
	targets. Protein glycosylation is a <u>post-translational</u> modification
	widespread among microorganisms. Recent work by our group has revealed
	that loss of protein glycosylation in our Gram-negative model bacterium,
	dramatically reduces bacterial fitness and virulence (Mohamed <i>et al</i> : 2019)
	J. Biol. Chem. 294, 13248-13268. These findings suggest protein
	glycosylation can provide a novel target to reduce the burden of antibiotic
	resistance.
	The general protein glycosylation systems in bacteria target multiple
	membrane secreted proteins, and glycosylation defective mutants display
	pleiotropic phenotypes that cannot be readily correlated with the loss of
	glycosylation of any specific protein. For example, loss of general O-
	motility but these are complex phenotypes that denote major physiological
	disturbances in the glycosylation-defective mutants. However, the
	mechanistic bases underpinning these phenotypes are unknown.
	We hypothesize that loss of protein glycosylation affects the stability of
	unglycosylated proteins in the bacterial cell envelope resulting in an
	unfolded protein response leading to stress, which in turn causes dramatic
Droject Description.	reduction in cell fitness.
Detailed description of	microbial glycobiology molecular biology and glycochemistry research will
the project	address this hypothesis by:
	1. Elucidating the mechanism behind the physiological alterations due to
	loss of protein glycosylation in bacteria.
	2. Developing proof of principle that molecules inhibiting protein
	glycosylation can provide antimicrobial activity.
	Aim 1: Global transcriptomics and proteomics analyses. The global gene
	expression of parental <i>B. cenocepacia</i> K56-2 strain and its isogenic Δogc and
	$\Delta pgIL$ mutants will be compared by RNA-SEQ. RNA samples will be prepared
	and processed in the Core Unit of the University of Wurzburg under the
	preparations (e.g. by FastOC & Trimmomatic), sequence reads will be
	mapped against the reference <i>B. cenocepacia</i> genome
	(STAR/Bowtie/Subread). The expression values will be calculated as counts

(HTSeq/Featurecounts) prior to the statistical analysis to determine the differentially expressed genes (voom-limma/EdgeR). To determine the differentially expressed genes, we will apply general lineal models combined with the use of a fold-based cut-off selection. This pipeline will help us to identify up- and down-regulated genes in the mutants vs. the parental strain. These data will be further analysed at a systems level (pathway and co-expression networks) linking pathways and networks with the different phenotypic traits already known for the *O*-glycosylation mutants (e.g. oxidative stress) and those derived from the Biolog phenotypic microarrays (e.g. differential growth in specific carbon sources) and the global proteomic analysis by Dr. Scott. These experiments will employ robust bioinformatic methods, custom software and scripts, assisted by the second supervisor, Dr. Guillermo Lopez Campos.

Aim 2: Are the non-glycosylated proteins degraded? Preliminary analyses of null glycosylation strains suggest processing of glycoproteins in the absence of glycosylation raising the hypothesis that loss of O-linked glycosylation leads to protease sensitivity of the unglycosylated proteins. We will use MS-based degradomics approaches to probe protein stability and half-life on a proteome scale. This work will be conducted by the PhD student under the guidance of our Australian collaborator, Dr. Nichollas Scott, and will involve a short stay of the PhD student at the University of Melbourne. To measure protein degradation, the endogenous peptides in the bacterial cells, which result from the turnover of proteins, will be enriched and subjected to LC-MS/MS analysis. Further, the selective enrichment of protein cleavage events will be monitored using the Nterminal amine isotopic labelling of substrates (N-TAILS) previously used by Dr. Scott to probe protein cleavage changes in response to apoptosis. To assess protein turnover, pulse chase experiments will utilise SILAC labelling. We will also generate diaminopimelate decarboxylase (LysA) and argininosuccinate lyase (ArgH,) mutants in B. cenocepacia K56-2 to allow for the incorporation of isotopically labelled amino acids. This approach, also established in the lab of Dr. Scott, facilitates assessing the incorporation rate and subsequent protein turnover rates at the proteome level. These experiments will be complemented by targeted studies in the Valvano lab undertaken with endogenous tagging experiments (e.g. with NanoLuc luciferase) to assess the role of glycosylation on specific proteins observed to change at proteomic and degradomics levels. Endogenously tagged proteins will be monitored by immunoblot, followed by purification and protein characterization by MS or alternative by fluorometry. To investigate the role of individual glycosylation sites in proteolysis, site-directed mutagenesis will be undertaken replacing the serine glycan acceptor residue by alanine. Disruption of glycoproteins of interest will be undertaken and comparative proteomics used to assess if these proteins are driving the changes associated with the loss of glycosylation.

PhD candidates will join a **vibrant, world-class** team engaged in **interdisciplinary studies** on microbial pathogenesis using molecular biology, structural, biochemistry, and cell biology approaches, and are strongly advised to consult the following links

	(http://p	ublish.uwo.ca/^	mvalvano/Adv	vice-to-grads.html)		and
	(<u>http://p</u>	ublish.uwo.ca/^	<u>mvalvano/ind</u>	<u>ex.html</u>) for additi	onal inf	ormation
	on what	to expect in the	Valvano lab.			
Project Keywords	Protein	glycosylation,	proteomics,	transcriptomics,	cystic	fibrosis,
	Burkhold	leria, antimicrot	oial resistance			

5.11 Bacterial Lipocalins: Novel Role in Bacterial Protection Against Antibiotic-Induced Membrane Lipid Peroxidation

Supervisor	Professor Miguel Valvano
Project Description:	we recently discovered that bacteria can resist antibiotics by mechanisms operating extracellularly in response to near-lethal antibiotic concentrations. This means microbes fight antibiotics even before they reach bacterial cells. Key molecules involved in this mechanism are the polyamine putrescine and lipocalins (LP), a highly conserved group of barrel- shaped proteins of unknown function produced by >6,500 bacterial species. We demonstrated LPs scavenge different classes of antibiotics from the extracellular milieu. Also, LPs bind isoprenoids (e.g. octaprenyl-phosphate) into the interior of the barrel, while low-affinity antibiotic binding occurs at the rim of the molecule. The physiological role of LPs remains unknown. Bacteria exposed to near-lethal antibiotic concentrations (e.g. during treatment of chronic and biofilm infections), also mount an oxidative response, which in turn stimulates transcription of LP encoding genes. We have now discovered that bacterial mutants defective in LP production display enhanced membrane lipid peroxidation and fail to survive under conditions that stimulate peroxidative stress. This means that LPs may have a novel role in protecting bacteria against toxic byproducts of lipid peroxidation. How bacterial cells overcome lipid peroxidation, especially the double membraned Gram-negatives, is virtually unknown. Our experimental results bridge this knowledge gap and uncover LPs as components of a novel mechanism to protect bacterial cell membranes from lipid peroxidative damage.
Detailed description of the project	 Inits programme will address two questions. (i) what are the structure-function properties of diverse LPs involved in antibiotic binding and protection against lipid peroxidation? and (ii) What other bacterial components are needed for protection against lipid peroxidation? The model bacteria employed are the Gram-negative members of the ESKAPE group, namely <i>Klebsiella, Acinetobacter, Pseudomonas and Enterobacter</i> species. This research project combines molecular microbiology, biochemistry, metabolomics, bioinformatics, and infection models to elucidate the role of LPs in antibiotic binding and in maintaining the homeostasis of the bacterial membranes under oxidative stress, commonly found upon exposure to near-lethal doses of antibiotics. The PhD student will investigate the function of LPs in the bacterial defences against lipid peroxidation by tackling 3 aims: To determine the structure-function of LP and its secretion state in protection against lipid peroxidation To identify and characterise additional components to LP required to protect bacteria from lipid peroxidation upon exposure to antibiotic stress and <i>in vivo</i> infection To assess the global effects of LP and related proteins in bacterial physiology by comparative transcriptomics on mutants <i>vs.</i> the parental strain pairs both exposed to sublethal concentrations of antibiotics.

	PhD candidates will join a vibrant, world-class team engaged in		
	interdisciplinary studies on microbial pathogenesis using molecular		
	biology, structural, biochemistry, and cell biology approaches, and are		
	strongly advised to consult the following links		
	(http://publish.uwo.ca/~mvalvano/Advice-to-grads.html) and		
	(http://publish.uwo.ca/~mvalvano/index.html) for additional information		
	on what to expect in the Valvano lab.		
Project Keywords	Antibiotic resistance, lipid peroxidation, RNAseq, metabolomics, protein		
	structure-function, lipocalin, outer membrane, Gram-negative bacteria,		
	stress responses, mass spectrometry, bioinformatics		

5.12 Macrophage-Bacteria Interactions in Cysctic Fibrosis: The Cellular Microbiology of the Novel Opportunistic Bacterium Achromobacter Species

Supervisor	Professor Miguel Valvano
Project Overview	Chronic infection and persistent inflammation in people with cystic fibrosis
	(PWCF) lead to progressive lung damage. Despite novel therapies to correct
	the CFTR disfunction chronic antibiotic treatments, compounded with
	extended life expectancy of PWCF, challenge the ecology of the lung
	microbiome and gives rise to the emergence of potential new pathogens
	displaying multidrug antibiotic resistance. Of these, Achromobacter sp. are
	particularly concerning since they are often the dominant bacteria
	recovered from sputum samples in an increasing number of PWCF including
	those with end-stage lung disease and they are also commonly found in the
	Achromohacter with lung disease and lack information on nother provide traiter
	of Achromobacter sp. and their ability to interact with inpate immune cells
	(e.g. macronhages, neutronhils) as well as an overall lack of information on
	the hiology of these bacteria. The overarching objective of this project is to
	understand the cellular microbiology of <i>Achromobacter</i> infections.
Project Description:	Our group has recently demonstrated that Achromobacter CF isolates can
Detailed description of	survive and replicate in human monocytic macrophages by surviving in a
the project	modified phagolysosome, and also that the intracellular infection results in
	macrophage pro-inflammatory cell by pyroptosis. The mechanistic details of
	how this occurs are unknow, and also unknown are the bacterial factors
	involved in promoting inflammation.
	This project has 2 objectives:
	1) identifying the bacterial properties associated with intracellular survival
	2) elucidating the macrophage cellular responses upon Achromobacter
	narticular in human CE defective cells
	particular, in numan cr-delective cens.
	To address objective (i) the PhD student will identify the bacterial properties
	involved in survival by a two-pronged approach. First, a candidate gene-
	based strategy to mutagenize genes suspected to be involved in intracellular
	survival (Primary targets include genes of putative Type III, IV and VI
	systems, O antigen and capsule biosynthesis clusters and several
	haemolysin-like genes. Second, in parallel, the PhD student will use an
	unbiased approach based on high-throughput transposon mutagenesis
	employing various systems (e.g. plasposons, TnSeg, Tradis). Mutants will be
	tested for intracellular survival using macrophages seeded in microtiter
	plates and the phenotypes further validated by genetic complementation.
	These experiments will identify genes involved in cell entry and intracellular
	survival using fluorescent microscopy and biochemical analyses, as
	appropriate.
	To address objective (ii) the student will characterize the inflammatory
	response in macrophages upon Achromobacter infection in normal and

	CFTR-defective human cells. These studies will employ a variety of approaches including but not limited to cytokine profiling, pathway inhibitors, and a new developed microscopic assay to image, detect, and quantify inflammasome complexes in cells, as well as a various cell biology approaches to precisely identify the properties of the <i>Achromobacter</i> - containing vacuoles in macrophages. These studies will be complemented with setting up a mouse model of <i>Achromobacter</i> infection in lungs. PhD candidates will join a vibrant , world-class team engaged in interdisciplinary studies on microbial pathogenesis using molecular biology, structural, biochemistry, and cell biology approaches, and are strongly advised to consult the following links (<u>http://publish.uwo.ca/~mvalvano/Advice-to-grads.html</u>) and (<u>http://publish.uwo.ca/~mvalvano/index.html</u>) for additional information on what to expect in the Valvano lab.
	on what to expect in the Valvano lab.
Project Keywords	Macrophage, cystic fibrosis, intracellular survival, inflammation, pyroptosis, virulence factors, CFTR, opportunistic bacteria, lung infection, microbial pathogenesis

5.13 Elucidation of Innate Immune Responses to Respiratory Virus Infection in Airway Epithelium as a Function of Age

Supervisor	Professor Ultan Power
Project Overview	Respiratory viruses cause substantial morbidity and mortality worldwide, particularly in the very young and old. Most viruses target the airway epithelium. Innate immune responses of the epithelium following infection likely triggers the immune-mediated pathogenesis responsible for disease symptoms. This project aims to understand how these responses vary as a function of age, which may provide insights into susceptibility to severe disease.
Project Description: Detailed description of the project	Respiratory viruses, such as RSV or SARS-CoV-2, are responsible for enormous morbidity and mortality worldwide and place a huge burden on health care systems. The largest burden of disease for most respiratory viruses occurs in the extremes of age (young infants and the elderly). The airway epithelium is the primary target of infection for most respiratory viruses and innate immune responses in these cells likely play an important role in controlling disease severity. Using our well-differentiated primary airway epithelial cell (WD-PAEC) culture models of RSV infection, we previously demonstrated that innate immune responses to infection of airway epithelium are more robust with chronological age in young infants. However, we do not know whether a similar situation applies to airway epithelium from healthy adults or the elderly. Therefore, in this project we will generate WD-PAECs from the elderly, young infants, and healthy adults and determine whether the type and robustness of innate immune responses to respiratory virus infection differ as a function of age. We will employ well validated techniques, such as OMICs (NGS, proteomics), multi- analyte BioPlex assays, RT-qPCR, immunofluorescence/confocal microscopy, and virus titrations, to study whether extremes in age influence cytopathogenesis and differential gene and protein expression to infection, with particular emphasis on innate immune response pathways. Ultimately, this project will shed light on increased susceptibility to severe respiratory virus infections at the extremes of life.
Project Keywords	Airway epithelium; respiratory viruses; RSV; innate immunity

5.14 Using the Immune System to Repair Tissue Damage in the Brain

Supervisor	Dr Yvonne Dombrowski
Project Overview	To develop novel regenerative therapies, understanding the crosstalk
	between immune and regenerative mechanisms is crucial. This project at
	the interface of neuroscience, immunology and tissue regeneration, will use
	immune mechanism to direct the regeneration of damaged brain tissue.
	This will benefit patients with neurodegenerative diseases such as multiple
	sclerosis, dementia, and patients with brain injury.
Project Description:	In multiple sclerosis (MS), the myelin sheath covering neuronal axons is
Detailed description of	destroyed resulting in neurodegeneration and permanent disability. There
the project	Is no cure for MS to date and patients will live with this debilitating disease
	cannot fully stop disease progression por repair the damage in the brain and
	spinal cord of MS patients. Novel the range tic strategies are urgently peeded
	that promote myelin regeneration. These therapies have huge potential to
	prevent disability and restore function in patients.
	We have shown that the immune system plays a critical role in myelin
	regeneration (Dombrowski et al 2017 NatureNeuro, Guzman de la Fuente
	et al, 2024 NatureComms). Yet, we still barely understand how these
	complex immune mechanisms direct and promote myelin regeneration on
	a molecular and cellular level. Understanding these underlying immune
	mechanisms in myelin repair and how to use them to support repair holds
	great potential for future wis therapies.
	This project will investigate how immune mechanisms regulate the
	regenerative response after myelin damage and stimulate the brain cells
	that can regenerate myelin.
	The aim of this project is to identify potential novel molecular and immune
	targets that can boost myelin regeneration for potential future therapies.
	To achieve this, preclinical MS models, brain in-a-dish and in vitro models of
	brain cells will be used to manipulate immune mechanisms to investigate
	the impact on myelin repair on molecular and cellular level. With our clinical
	collaborators, we will also use human MS samples to determine if pro-
	fegure at this project will be on inflammasames that have recently been
	linked to regulate immune mechanisms in animal models of MS (Chou et al.
	Nature 2021 Ma et al 2021 [ExpMed]
	Objectives:
	1. Determine how AIM2 inflammasome regulates brain cells
	2. Identify the AIM2-mediated molecular mechanisms in myelin repair
	3. Modulate AIM2 inflammasome pathways in human oligodendrocytes to
	promote myelin generation

Project Keywords	Neuroimmunology,	tissue	repair,	multiple	sclerosis,	neuroscience,
	neurodegeneration,	immun	ology,	inflammat	ion, tissue	regeneration,
	regenerative immun	ology, t	orain rep	air, stem c	ells, MS, d	ementia, brain
	damage, experiment	al medio	ine,			

5.15 Generating and Validating a Novel Human 3D-Brain Cell Culture System as a tool for Neuro-Immune Research

Supervisor	Dr Yvonne Dombrowski
Project Overview	There is a gap in readily available human brain culture systems that can replace animal models and do not require specialist resources. This project will develop a novel tool to study human brain cells using a commercially available stem cell line.
	The model could serve as a link between early pre-clinical and clinical studies and as a (semi-)high throughput screening tool for potential targets for neurological research such as for MS, neurodegeneration, dementia and Alzheimer's.
Project Description: Detailed description of the project	This project aims to generate a novel human brain glial culture model from a human neural stem cell line as a replacement for commonly used animal- derived glial cultures. This could vastly reduce animal use in neuroscience and act as a tool linking preclinical to clinical studies.
	 Objectives: 1. Establish and characterise a 3D glial culture from human neural stem cells (hNSC) Individual brain cell types present in murine mixed glial cultures (e.g. neurons, oligodendrocyte progenitor cells, oligodendrocytes, astrocytes) will be generated from hNSC in their specific differentiation condition. Differentiated cells will be detached and combined in a step-wise process combining those with similar maintenance conditions first. Once viability and stability is confirmed the next brain cell type will be added and so on. A variation of culture conditions and kinetics will be tested at each level to ensure viability of the increasingly complex 3D glial culture.
	2. Establish brain cultures with modified gene expression Animal-derived glial cultures are often generated from genetically altered mice to investigate the function of a specific gene. As a proof- of-principle, we will knock out gene expression in hNSC by CRISPR/cas9 before differentiating cells and then combining them. Stability of k.o. and cell type will be tested along the way.
	 3. Application of the new tool: Do human regulatory T cells (Treg) promote oligodendrocyte differentiation? To show its applicability in neuro-immune research, we will use the model to test our findings from our previous study in the mouse showing that Treg promote oligodendrocyte differentiation (Dombrowski 2017, NatNeuro). Neuroscience, neuroimmunology, stem cells, CRISPR/cas9, MS. glia. brain
	cells, dementia, neurodegeneration, Alzheimer's

5.16 Deciphering the Role of the E3 Ubiquitin Ligase Pellino-2 in COPD

Supervisor	Professor Paul Moynagh and Dr Aoife Rodgers	
Project Overview	This project will investigate the molecular mechanisms through which the	
	E3 ubiquitin ligase, Pellino-2, plays a role in COPD pathogenesis.	
Project Description:	Pellino1, Pellino2 and Pellino3 form a family of E3 ubiquitin ligases that have	
Detailed description of	been implicated in the regulation of innate immune signalling pathways	
the project	including that employed by IL-1. IL-1 signalling is an important component	
	in the development of emphysema and COPD, for which there is no known	
	cure. This project will investigate the role of Pellino-2 in the development of	
	COPD. Our preliminary data suggested that Pellino-2 plays a key role in the	
	development of emphysema, the effects of which are mediated through	
	neutrophil-induced inflammation. We will determine the molecular	
	mechanisms through which Pellino-2 is mediating its affects. Primary	
	murine bone-marrow derived neutrophils will be utilised for molecular and	
	functional studies, in combination with an <i>in vivo</i> elastase-induced	
	emphysema model to decipher the precise signalling mechanisms involved.	
	The successful applicant will be integrated into QUB research groups of	
	experienced researchers with access to world-leading facilities. The PhD	
	student will be encouraged to engage in a variety of impact activities,	
	including participation at local, national, and international conferences, and	
	publication of scientific papers in peer reviewed journals.	
Project Keywords	ubiquitin ligase; Pellino 2; COPD; infection; neutrophils	

6. ORAL HEALTH

6.1 ExPloring the oRal health care needs of older pEople Living with neUrodegenerative Disease at homE (PRELUDE)

Supervisor	Dr Gary Mitchell and Professor Gerry McKenna		
Project Overview	There is a paucity of investigation around the oral health needs of older		
	people living with neurodegenerative disease at home. The PRELUDE study		
	will provide the candidate with the opportunity to undertake novel research		
	through a scoping review, a cross-sectional survey, semi-structured		
	interviews and a modified Delphi technique.		
Project Description:	Background: Despite clinical evidence of poor oral health and hygiene in		
Detailed description of	older people living with neurodegenerative disease (e.g., dementia and		
the project	Parkinson's disease) at home, there is presently a paucity of research that		
	has sought to explore the oral health needs of this population.		
	Aim: The aim of this study is to explore the oral health care needs and		
	experiences of older people living with neurodegenerative disease at home.		
	Objectives There are four research objectives (DO)		
	Objectives: There are four research objectives (RO).		
	RO1: Scoping review of the international literature on the oral health care		
	needs of older people living with neurodegenerative disease at home.		
	RO2: Using existing supervisory networks, carry out a five-country (UK &		
	Ireland) cross-sectional survey using the validated OHIP-14 to determine		
	oral health related quality of life in approximately 150 people living with		
	neurodegenerative disease at home.		
	RO3: Using findings from RO2, carry out a five-country-wide patient-public		
	consultation, with approximately 12-15 dyads, to explore the experiences		
	of older people (and their carers) living with neurodegenerative disease		
	about oral health.		
	DOA: A five country, wide outended stakeholder consultation with		
	KO4. A live-country wide extended stakenolder consultation with		
	priority areas for people living with neurological disease at home in relation		
	to oral health using a modified Delphi survey		
Project Keywords	Oral Health Neurological Disease Quality of Life Community Care Mixed		
	Methods Research		

6.2 Addressing Oral Health for Older Adults in Care Homes

Supervisor	Professor Gerry McKenna
Project Overview	This project will develop and pilot test nutritional interventions for older
	adults which better consider their oral health. The intervention will be co-
	designed with care homes residents, care home staff and managers.
Project Description:	Prevention and management of malnutrition in care homes is a significant
Detailed description of	clinical challenge meaning that residents are often provided with diets rich
the project	in complex carbohydrates, including sugars, plus additional sugared
	medications and oral nutritional supplements to increase caloric intake.
	However, this creates a significant problem for oral health as the causal link
	between sugar intake and dental caries is well established. Epidemiological
	changes have meant that the majority of older adults within care homes
	now retain their natural teeth, giving rise to a partially dentate care home
	population who are very susceptible to dental disease as their ability to
	manually clean their teeth declines. Currently the oral health of care home
	residents is significantly worse than their community living peers, with a
	very high prevalence of dental caries and periodontal disease. This results
	in pain, discomfort and negative impacts on oral function and quality of life.
	Poor oral health may also exacerbate a range of medical conditions
	including aspiration pneumonia and delirium, increasing healthcare costs
	and leading to poorer overall outcomes. This project will develop and pilot
	test nutritional interventions for older adults which better consider their
	oral health. The intervention will be co-designed with care homes residents,
	care home staff and managers.
Project Keywords	Older adults, oral health, nutrition

6.3 Exploring the Potential Oral Health Benefits of Indigenous Medicinal Plants as Alternatives to Antimicrobials

Supervisor	Dr Chen Situ & Professor Gerry McKenna
Project Overview	Antimicrobial resistance (AMR) has been declared by WHO as one of the top global public health threats facing humanity. Misuse and overuse of
	antimicrohials are the main drivers in the development of drug-resistant
	pathogens. This project aims to evaluate phytochemicals in the oral
	environment as safe. effective, and sustainable antibiotic alternatives to
	combat AMR.
Project Description:	The widespread use and heavy reliance on antimicrobials across human and
Detailed description of	veterinary medicine as well as agricultural food production have inevitably
the project	resulted in the emergence of AMR which is now one of the biggest threats
	to healthcare systems worldwide including dental health. AMR is a
	significant issue in dentistry due to over prescription of antibiotics for dental
	infections. There are also other bacterial infections which can occur in the
	mouth including periodontitis and carles which are bacterial driven chronic
	Reducing unnecessary use of antibiotics to preserve effectiveness of existing antimicrobials, and utilising antibiotic alternatives are among the current
	global actions to combat AMR. The continual use of herbal medicines to
	date in many parts of the world supports the anecdotal effectiveness of
	evidence suggests that medicinal plants and their phytochemicals possess
	potent antibacterial properties again many pathogenic bacteria including
	their resistant strains. This project seeks to provide scientific evidence of the
	efficacy of plant substances (phytochemicals) against dental bacteria and to
	elucidate their underlying antibacterial mechanisms using contemporary
	scientific tools and advanced technological platforms interlinking different
	disciplines of dentistry, microbiology, biochemistry, molecular biology and
	biotechnology.
Project Keywords	Oral health, periodontal disease, caries, AMR, phytochemical, medicinal
	plant

7. EYE HEALTH

7.1 Optimising Delivery of Ophthalmology Services

Supervisor	Dr David Wright
Project Overview	Demand for Ophthalmology services is growing, driven by aging populations
	and the development of new treatments for chronic eye diseases. The most
	prevalent sight-threatening conditions, glaucoma, diabetic retinopathy and
	age-related macular degeneration all require regular monitoring to ensure
	that treatments are given in a timely manner. One of the main classes of
	medication, anti-VEGF drugs, may be needed for many years on a monthly
	basis, administered by injection into the eye. In the UK, Ophthalmology is
	the busiest specialty for outpatient activity and clinics are overloaded with
	little prospect of increasing capacity. Excessive demand can lead to an
	patients are losing vision due to delayed treatment
	In future, home-monitoring of chronic conditions may be part of the
	solution, with manufacturers building small imaging devices that patients
	can use at home, with AI-driven analysis software to automatically flag
	problems. At present, these solutions are not suitable for wide-scale
	deployment.
Project Description:	This project is focused on using technology to optimise Ophthalmology
Detailed description of	services, improving outcomes within the available resources. Each year,
the project	approximately 10% of patient appointments in Ophthalmology are missed
	due to non-attendance and patients with persistent non-attendance are far
	more likely to suffer serious complications and lose vision, increasing clinic
	demands still further. Several socio-economic factors are associated with
	competing time demands: patients may not attend because the
	appointments they receive clash with work or other commitments
	In this project the student will investigate whether giving patients greater
	choice in booking their appointments can increase attendance and improve
	health and economic outcomes.
	This will be achieved through parallel work packages.
	• A scoping review of the influence of time constraints on attendance at
	ophthalmic appointments.
	• Retrospective analysis of records from ophthalmic clinics (e.g. glaucoma
	service, macular service, diabetic eye screening service) to estimate the
	attendance rate and explore factors associated with non-attendance.
	• Simulation modelling to determine the clinical and economic costs of
	missed appointments annually and the likely benefits of increasing
	attendance.
	• A trial comparing performance of a prototype online booking system
	with the current standard booking system in terms of attendance rate.
	This project would suit a student with an interest in digital healthcare and
	learning advanced programming and analytical techniques.
Project Keywords	Health services research; statistical analysis; digital health; simulation

7.2 Identifying Novel Biomarkers and Risk Factors for Age-Related Eye Disease

Supervisor	Dr Ruth Hogg
Project Overview	Age-related eye disease is a significant contributor to disability and reduced quality of life in older age. We wish to identify novel biomarkers of age- related eye disease and determine the burden of disease within the population attributable to these diseases within the Northern Ireland Cohort for the Longitudinal Study of Aging (NICOLA).
Project Description:	Background: Multi-disciplinary longitudinal epidemiological studies provide
the project	disease and the development of novel biomarkers to aid diagnosis and prognosis.
	NICOLA is an ongoing population-based epidemiological study that has recruited 8,500 participants from across Northern Ireland, followed for nearly a decade. At baseline and wave 3 they underwent multi-modal retinal imaging as well as other health assessments. This data combined with the medical history, lifestyle, demographic, genetic and blood-based biochemistry provides a very rich dataset to explore the development and progression of diseases such as age-related macular degeneration or diabetic retinopathy. Strong links with EEECS Computer Vision group enable students to develop novel imaging biomarkers or Artificial Intelligence/Machine Learning approaches. This provides the opportunity to craft a project to a student's interest potentially including a comparative component from the student's own country.
	Aim: to identify novel biomarkers of age-related eye disease and determine the burden of disease within the population attributable to these diseases within NICOLA.
	Objectives:
	 Use the NICOLA longitudinal dataset to design a study focused on novel risk factors or biomarkers for age-related eye disease. Adopt innovative methodologies including machine learning to identify novel relationships within the high-dimensional data.
	A project can be developed to suit the interests, skills and career goals of the student with full training provided in new methods.
Project Keywords	Age-related macular degeneration, ophthalmology, Diabetic Retinopathy,
	machine learning, epidemiology, artificial intelligence

8. DRUG DELIVERY AND BIOMATERIALS

8.1 3D-printed Implantable Long-acting Drug Delivery Systems for the Treatment of Chronic Conditions

Supervisor	Dr Eneko Larrañeta
Project Overview	This project targets the problem of treatment non-adherence seriously
	affecting patients with chronic conditions like schizophrenia, Parkinson's,
	HIV, and Alzheimer's. Moreover, this issue costs the NHS £500M/year. The
	project aims to develop implantable long-acting drug delivery systems
Draiget Description:	Inrough 3D-printing technology to adapt the system to patient's needs.
Detailed description:	with chronic conditions such as schizonbronia. Parkinson's HIV and
the project	Alzheimer's Also non-compliance reduces patients' quality of life and can
	lead to premature death. Accordingly, there is an urgent need for systems
	capable of prolonged, unattended drug administration.
	Aim: This PhD project aims to develop implantable long-acting drug delivery
	systems using 3D-printing, enabling personalized dosage forms tailored to
	patient needs and precise release profiles for effective therapy delivery. The
	project will focus on delivering two representative compounds: risperidone
	and tizanidine, used to treat schizophrenia and spasticity in multiple
	scierosis, respectively.
	Objectives:
	• Develop/validate HPLC methods for quantifying tizanidine and
	risperidone.
	• Develop implants containing risperidone and tizanidine using various 3D-
	printing methods.
	• Characterize the implants through techniques like thermal analysis, FTIR,
	X-ray diffraction, SEM, Raman microscopy, and acoustic microscopy.
	• Assess in vitro drug release from the implants.
	• Evaluate <i>in vivo</i> drug release using a rat animal model.
	The student will have a unique opportunity to work on a novel and
	challenging project at the interface of formulation science and
	pharmaceutical engineering, providing them with a distinctive set of
	complementary skills and enhancing their career prospects augmenting
	their CV and informing their career choices.
Project Keywords	3D-printing, implantable devices, sustained drug delivery, chronic
	conditions, adherence to treatment

8.2 Development of 3D-printed Intra-Oral Devices for the Treatment of Dry-Mouth

Supervisor	Dr Eneko Larrañeta
Project Overview	This project seeks to develop 3D-printed intra-oral devices capable of providing lubrification and release of active compounds such as fluorine ions and antimicrobial agents into the oral cavity. This is a highly multidisciplinary project combining different areas of expertise such as dentistry, biomaterials and pharmaceutical-sciences
Project Description: Detailed description of the project	Dry-mouth, or xerostomia, is a condition in which the salivary glands of the patient do not produce enough saliva to keep the oral cavity wet and hydrated. This condition can be due to Sjögren's syndrome, a side effect of certain medications or radiation exposure during cancer treatment. Due to the protective effect of saliva, the quality of life in patients suffering from dry mouth is poor and they are severely affected by dental disease particularly dental caries. In this project we propose to develop 3D-printed intra-oral devices to treat this condition. These devices will be designed to fit the mouth of the patient specifically. For this purpose, two different types of 3D-printing will be used: fused deposition modelling and digital light processing. FDA approved materials such as poly(lactic acid) and dental resins will be used to prepare these devices. The resulting devices will provide lubrification. Moreover, the formulation will contain different cargos such as fluorine ions and antibacterial agents to prevent tooth decay. The resulting systems will be characterised, and its antimicrobial properties and biocompatibility will be evaluated. In addition to 3D-printing this project will cover techniques such as spectroscopy, microscopy (optical and electronic), microbiological evaluation and cytocompatibility assays.
Project Keywords	Dry-mouth; 3D-printing; Intra-oral devices

8.3 Innovative Long-acting Drug Delivery Systems for Treating Ocular Diseases

Supervisor	Professor Raj Thakur
Project Overview	Globally, 285 million people suffer from visual impairment, with prevalent eye diseases like age-related macular degeneration, diabetic retinopathy, glaucoma, and cataract. Our project aims to develop innovate long-acting drug delivery systems targeting the eye diseases, enhancing treatment effectiveness.
Project Description:	This project aims to develop innovative, long-acting drug delivery systems
Detailed description of	for treating eye diseases, utilizing gel-based formulations loaded with drug-
the project	containing nano/microparticles. Our focus encompasses the design, fabrication, physicochemical characterization, and in vitro evaluation of these novel delivery systems.
	Key objectives include:
	1. Material Selection and Characterization: Comprehensive assessment of candidate materials for production of effective delivery systems.
	2. Mechanical Performance Evaluation: Using novel ex vivo models to assess the mechanical properties and performance of the formulations.
	3. Drug Release Modelling: Conducting mathematical modelling to predict and optimize drug release profiles from the developed formulations.
	4. Long-Term Stability Assessment: Investigating the stability of drugs within the implants over an extended period.
	5. Biodegradation and Biocompatibility Studies: Evaluating the implants' biodegradation process and ensuring compatibility with ocular tissues.
	By achieving these objectives, our goal is to advance the development of efficient and safe drug delivery systems tailored for treating eve diseases
	This research holds promise in enhancing therapeutic outcomes and patient
	compliance through sustained drug release mechanisms.
Project Keywords	Biologics, Controlled drug delivery, Sustained release, Long-acting, Implants

8.4 3D Printed Based Drug Delivery Systems for Local Treatment of the Oral Cavity

Supervisor	Professor Dimitrios Lamprou
Project Overview	The project involves the development of an advanced drug delivery system
	by 3D printing for the delivery of drug(s) through the surface of the patients'
	oral mucosa. In this project, different 3D printed systems, such as
	microneedles & patches will be investigated.
Project Description:	The conventional methods of drug delivery require repeated dosing in the
Detailed description of	oral cavity due to the presence of saliva. Therefore, "implantable" devices
the project	that could provide sustained release of the drug in the oral cavity is needed.
	Microneedle (MN)-mediated drug delivery systems (DDS) and patch
	systems have been developed to enable patients to painlessly administer
	therapeutic micro- and macromolecule drugs. A wide range of designs
	including solid metal or polymeric or hallow microneedles, and reservoir or
	matrix patches. 3D printing process was patented in 1986; however, only in
	the last decade has been used for medical application, and has been utilized
	in the fields of prosthetics, bio-fabrication, and pharmaceutical printing. The
	aim of this project is to develop 3D printed systems of various designs using
	advanced additive manufacturing technologies. The printing capabilities of
	suitable polymer grades will assess in terms of flexibility, mechanical
	strength and drug efficiency. Furthermore, printed patches will be
	evaluated both in vitro and in vivo to investigate release patterns, drug
	loading, stability and clinical effectiveness.
Project Keywords	Microfabrication, microneedles, patches, oral applications, drug delivery

8.5 Regulation of CaaX Protein Processing

Supervisor	Dr James Burrows
Project Overview	USP17 is required for proper localisation of multiple CaaX proteins (H/N-Ras, Rho, Rac1, Cdc42). We have shown that USP17 regulates Ras converting enzyme (RCE) 1 isoform 2, a protease which processes CaaX proteins. This project will further explore the role of RCE1 isoform 2, and USP17, in CaaX protein regulation.
Project Description: Detailed description of the project	USP17 is over-expressed in a range of primary tumours including NSCLC, breast, colorectal, cervical, ovarian and osteosarcoma and its depletion has been shown to block the growth of cells from all these cancer types, as well as the migration of a range of cancer cells.
	We have been working to further elucidate the function of USP17 to help understand how targeting it would impact cancer cells. We have shown that depleting USP17 blocks proper localisation of CaaX proteins such as H/N- Ras, Rho, Rac1, and Cdc42, all of which have been strongly implicated in cancer progression. In addition, we have demonstrated this is mediated via USP17 regulating a novel isoform of Ras converting enzyme (RCE) 1, which is involved in processing CaaX proteins. USP17 facilitates the trafficking of RCE1 isoform 2 out of endoplasmic reticulum (ER) indicating it is involved in trafficking RCE1 isoform 2, and possibly CaaX proteins. Therefore, this project will further investigate the role of USP17 in RCE1 isoform 2 regulation, and how this contributes to its role in cancer cells.
	techniques.
Project Keywords	RCE1, USP17, protease, cancer

8.6 Does One Size Fit All for Antimicrobial Delivery Via Nanoparticles?

Supervisor	Dr James Burrows & Professor Brendan Gilmore
Project Overview	Bacteria can avoid antibiotics by hiding in our cells. Nanoparticles can deliver antibiotics to intracellular infections, but our studies indicate some bacteria are in cellular compartments nanoparticles don't reach. This project will further investigate where within the cell different bacteria reside, and whether altering nanoparticles can help target these locations.
Project Description: Detailed description of the project	Antimicrobial resistant bacteria are a growing problem and new ways are needed to target bacterial infections more efficiently. One way in which bacteria can avoid therapeutics is via intracellular infection, where they hide within our own cells. Multiple bacteria can establish intracellular infections and much work has focussed on delivering antimicrobials into cells via various mechanisms.
	We have carried out preliminary work using nanoparticles to deliver antibiotics to combat intracellular infections. However, we have had mixed success, due to the finding that some bacteria reside in compartments within the cell these nanoparticles don't reach. We have also observed that altering some parameters of nanoparticles can alter their cellular uptake, and possible their destination within the cell. Therefore, this project will further investigate where within the cell different bacteria reside, and whether nanoparticles can be used to target these locations.
	The student will be part of a cross-disciplinary team based in the School of Pharmacy, and will have the opportunity to learn a broad range of molecular biology, tissue culture, bacterial culture, and cell biology related techniques.
Project Keywords	Antimicrobial, nanoparticles, bacteria, intracellular

8.7 Relationship Between Antibiotic Therapy and Development of Antimicrobial Resistance in Patients with Bronchiectasis and COPD

Supervisor	Professor Michael Tunney and Dr Deirdre Gilpin
Project Overview	This project will determine if there is a relationship between use of
	antibiotics and other drug therapies and the development of antimicrobial
	resistance in patients with bronchiectasis and COPD.
Project Description:	To decrease the risk of acute infective exacerbations or flare-ups of their
Detailed description of	condition, individuals with bronchiectasis and COPD are frequently
the project	prescribed long-term oral and inhaled antibiotics. However, it is not clear
	what effect such antibiotic treatment has on microbial community
	composition and the development of antibiotic resistance and how this
	relates to patient outcomes.
	As part of an ongoing collaboration between Queens University Belfast and
	the University of Dundee, we have access to a large number of clinical
	samples and extensive clinical and biomarker data from patients enrolled in
	clinical studies and the European Bronchiectasis Registry (EMBARC). In this
	project, we will determine whether microbiota composition and presence
	of resistance genes in these samples correlates with previous antibiotic
	treatment. Metagenomic analysis will be performed to determine the
	abundance of genes encoding antimicrobial resistance, the resistome',
	within the community of bacteria, and how it changes in response to
	treatment. The relationship between development of resistance and an
	extensive range of clinical outcomes (lung function, quality of life, time to
	next exacerbation) and measures of inflammation will also be determined.
	This project will provide optensive training in clinical pharmagy clinical trial
	methodology molecular microbiology inflammatory biomarker
	measurement and statistical analysis as part of an inter-disciplinary and
	internationally renowned research team. Moreover, this project will use
	rich clinical metadata and molecular resistance markers to explore
	prognostic markers that have potential to drive improvements in clinical
	care of people with bronchiectasis and COPD.
Project Keywords	Infection, antimicrobial resistance, PCR, next-generation sequencing,
	metagenomics, clinical pharmacy
8.8 4D Printing Technologies in Cancer Therapeutics

Supervisor	Professor Dimitrios Lamprou
Project Overview	Despite the advances achieved in cancer management, improvements in the quality of life of cancer survivors are urgent. Moreover, considering the heterogeneity that characterizes tumours and patients, focusing on individuality is fundamental. In this context, 3D printing (3DP) and 4D printing (4DP) techniques allow for a patient-centred approach.
Project Description: Detailed description of the project	According to WHO, cancer is the second leading cause of death worldwide, with nearly 1 in 6 deaths been due to cancer. The principal modes of cancer management are surgery, radiotherapy, chemotherapy and pharmaceutical agents. However, there are many side effects from extant treatments e.g., invasiveness of surgery, and with other treatments being systemic in nature; therefore, only a small fraction of the drugs reaches the tumour site. Due to the short period of actions, repeated doses are often required, which can lead to exacerbation of side effects and inconvenience. Due to these obstacles, targeted or localized release technology coupled with long-acting treatment functionality is a key research theme to replace systemic administration therapies and show potential for advancing cancer treatment including capability of personalizing the treatment. One especially promising therapeutic option gaining prominence is the use of multifunctional implants combining tumour-killing ability while promoting bone resorption/growth. Therefore, the main goal of this project is to investigate new approaches for targeted long-acting drug release for effective cancer therapies based on 3D & 4D printed / bioprinted drug- loaded implants
Project Keywords	Bioprinting, Scaffolds, cancer, long-acting implants

8.9 Design and Evaluation of a Bone-on a-Chip Microfluidic Device

Supervisor	Professor Dimitrios Lamprou
Project Overview	Bone-on-a-chip models are mimicking the key features of bone and can
	potentially shift the paradigm of future therapeutic, research development,
	and be used for drug screening and testing new implants.
Project Description:	Cancer is a leading cause of death worldwide and characterized by an
Detailed description of	aggressive growth of cells, which divide without normal limitations, invade,
the project	and destroy adjacent tissues, and spread to distant anatomic sites through
	a process called metastasis. Bone is the most common site for metastatic
	spread from the breast, prostate or lung, and is associated with damage to
	the bone tissue, pain, and a high degree of patient mortality. This
	underscores the need for effective treatment options including safe and
	efficacious drugs. The development of new medicines is resource-intensive,
	and the high costs of development and attrition rates in anticancer drug
	development represent significant challenges for the pharmaceutical
	industry, healthcare providers and patients. Enhanced screening tools could
	help address the problem of late-stage failures and reduce the attrition rate
	of drugs in the clinical development pipeline by providing more informative,
	critical information at an earlier stage. Most in-vitro cancer studies are
	conducted using common 2D cell culture methods that fail to recapitulate
	the biological cues inherent in native tissue. This project will manufacture a
	microfluidic (lab-on-a-chip) device to mimic the 3D microenvironment in
	vitro more closely giving rise to the more physiologically relevant bone-on-
	a-chip.
Project Keywords	Bioprinting, lab-on-a-chip, microfluidics, cancer

8.10 Design of Novel Mucoadhesive Lubricants for the Treatment of Xerostomia and Xerostomia-induced Infection

Supervisor	Professor David Jones and Professor Gavin Andrews
Project Overview	This project will design, characterise and evaluate novel mucoadhesive
	lubricants for topical application to the oral cavity for the treatment of
	xerostomia (dry mouth). Additionally, such systems will be further designed
	to incorporate antimicrobial/anti-fungal agents for the treatment of
	xerostomia-related infection.
Project Description:	Xerostomia is defined as the subjective complaint of oral dryness and is
Detailed description of	associated with either permanent or transient salivary hypofunction.
the project	Current treatment options for xerostomia aim to relieve oral discomfort by
	keeping the mouth moist. Gustatory or pharmacological sialogogues such
	as chewing gum and pilocarpine stimulate saliva secretion and are effective
	in some patients with residual salivary gland function. However, many
	patients have insufficient functional tissue to respond to sialogogues and
	these patients rely on saliva substitutes. There are a variety of aqueous-
	based substitutes available, but their efficacy is limited by a short duration
	of action/insufficient lubricity. Building on previous work this PhD will
	design thermoresponsive gels that can be applied to the oral cavity as a
	spray but will undergo a viscosity change and interact with the oral
	mucosa/hard tissues. Uniquely these systems will simultaneously co-deliver
	both moisture to the applied site and will provide a lipid coating at the site
	which offers enhanced and prolonged lubricity. If required antimicrobial
	agents will be included.
	Initially, characterisation of current products will be performed to
	understand their current limitations (including information from current
	users). The project will then develop a series of formulation platforms and
	characterise their in vitro properties relative to the proposed clinical
	condition. Additionally, an in vitro model will be developed to understand
	lubricity before potentially examining their in vivo efficacy.
Project Keywords	Xerostomia, gel, lubricant, infection

8.11 Development of Novel Mucoadhesive Drug Delivery Platforms Containing Antimicrobial and Anti-Inflammatory Agents Designed for the Improved Treatment of Periodontal Disease

Supervisor	Professor David Jones and Professor Gerry McKenna
Project Overview	This project will design, characterise and evaluate novel gels systems that
	offer enhanced retention within the periodontal pocket and, whilst in situ,
	will provide controlled (>1 week) release of a unique combination of
	antimicrobial and anti-inflammatory agents.
Project Description:	Periodontitis is an inflammatory condition affecting the supporting
Detailed description of	structures of teeth (the periodontium) that is characterised by the
the project	formation of a space between the gingiva and tooth, termed the periodontal
	pocket. The primary aim in the treatment of periodontitis is to promote
	periodontal healing through eradication of sub-gingival pathogens. Due to
	the limited clinical efficacy/patient acceptability of oral (systemic)
	antibiotics and antimicrobial mouthwashes/instillation solutions, an
	interest has developed in the clinical use of implantable antimicrobial drug
	delivery systems that are designed for direct implantation into the
	periodontal pocket and offer controlled drug release whilst in this
	Building on provious work this PhD will design polymeric platforms that will
	be retained in the periodontal pocket through an adhesive interaction
	between the formulation and the lining of the pocket (mucoadhesion)
	Previously we have provided strong clinical evidence of this approach. This
	study will progress this work to enable the co-delivery of an anti-microbial
	agent and a non-steroidal anti-inflammatory agent, thereby enabling
	simultaneous resolution of the infection and the resulting inflammation.
	The project will develop a series of formulation platforms using our unique
	Eutectic technology and characterise the in vitro properties relative to the
	proposed clinical condition. Additionally, it is hoped that the clinical efficacy
	of these systems may be examined.
Project Keywords	Periodontal disease; Infection; Inflammation; Rheology; Eutectic

8.12 Development of Novel Topical Strategies for the Treatment of Xerostomia

Supervisor	Professor David Jones and Professor Gerry McKenna
Project Overview	This project will design, characterise and evaluate novel mucoadhesive lubricants for topical application to the oral cavity. Additionally, such systems will be designed to incorporate antimicrobial/anti-fungal agents for the treatment of xerostomia-related infection.
Project Description:	Xerostomia is defined as the subjective complaint of oral dryness and is
Detailed description of	associated with either permanent or transient salivary hypofunction.
the project	Current treatment options for xerostomia aim to relieve oral discomfort by keeping the mouth moist. Gustatory or pharmacological sialogogues such as chewing gum and pilocarpine stimulate saliva secretion and are effective in some patients with residual salivary gland function. However, many patients have insufficient functional tissue to respond to sialogogues and these patients rely on saliva substitutes. There are a variety of aqueous-based substitutes available but their efficacy is limited by a short duration of action/insufficient lubricity. Building on previous work this PhD will design thermoresponse gels that can be applied to the oral cavity as a spray but will undergo a viscosity change and interact with the oral mucosa/hard tissues. Uniquely these systems will simultaneously co-deliver both moisture to the applied site and will provide a lipid coating at the site which offers enhanced and prolonged lubricity. If required antimicrobial agents will be included.
	their in vitro properties relative to the proposed clinical condition
	Additionally, an in vitro model will be developed to understand lubricity
	before potentially examining their in vivo efficacy.
Project Keywords	Xerostomia; Thermoresponsive gels/emulsions; Rheology; Lubricity

8.13 Dip-coating Using Silicone Elastomer Dispersions as a Strategy for Preparing Reservoir-type silicone Elastomer Vaginal Rings for HIV prevention

Supervisor	Professor Karl Malcolm and Dr Peter Boyd
Project Overview	Matrix-type devices generally release drugs according to root-time kinetics.
	However, dip-coating is a simple method for converting the matrix devices
	into reservoir devices. In this project, we will evaluate the utility of dip-
	coating silicone elastomer matrix-type devices containing the antiretroviral
	drug dapivirine to produce reservoir devices suitable for HIV prevention.
Project Description:	Background
Detailed description of	A matrix-type silicone elastomer vaginal ring releasing the antiretroviral
the project	drug dapivirine-developed here at QUB-is now being used by women
	across eleven African countries to prevent sexual acquisition of HIV
	infection. This matrix ring is relatively easy to manufacture via a simple one-
	step injection molding process. However, an inherent disadvantage with
	this matrix ring is that it does not provide constant daily release of
	dapivirine; instead, a burst of dapivirine is first released followed by steadily
	declining amounts on subsequent days. Although reservoir-type silicone
	elastomer vaginal rings providing zero order release kinetics can be
	manufactured via injection molding, the multi-step process is relatively
	complex and expensive.
	Aims / objectives
	In this project you will investigate the potential to manufacture reservoir-
	type dapivirine-loaded rings by dip-coating silicone elastomer matrix-type
	rings using custom silicone elastomer dispersion materials. Activities will
	include developing a dip-coating method, developing an HPIC method for
	quantification of danivirine performing in vitro release studies and
	characterising the devices using thermal analysis methods (such as DSC and
	TGA). The homogeneity of coating will be assessed using microscopy
	techniques, and the influence of applying multiple dip-coated lavers
	evaluated on the dapivirine release rate.
Project Keywords	HIV prevention; silicone elastomer; dip-coating; matrix and reservoir
	devices; in vitro release

8.14 Novel Statin Formulations for Treatment of Bacterial Vaginosis

Supervisor	Professor Karl Malcolm and Dr Deirdre Gilpin
Project Overview	Use of statins is associated with reduced G. vaginalis and increased
	beneficial lactobacilli in the human vaginal microbiome. In this project, we
	will develop vaginal ring formulations that provide sustained/controlled
	release of statins—in combination with conventional antibacterial drugs—
	as potential new treatments for bacterial vaginosis.
Project Description:	Background
Detailed description of	Bacterial vaginosis (BV) is most prevalent vaginal condition, affecting 30% of
the project	women globally. It is associated with depletion of healthy lactobacillus and
	overgrowth of certain anaerobic bacteria, such as Gardnerella vaginalis.
	Current treatment options include use of antibiotic drugs, such as
	metronidazole and clindamycin, administered orally or vaginally. However,
	many women experience an endless cycle of BV episodes; treatment
	efficacy is poor and recurrence rates are high. <u>Abdelmaksoud et al.</u> , (2017)
	reported that oral statin use was associated with reduced proportions of G.
	vaginalis and greater proportions of beneficial lactobacilli in the vaginal
	microbiome. These data suggest that statins may be useful in the treatment
	of BV, either alone or in combination with more conventional treatments.
	Aims/objectives
	The aim is to develop and characterise long-acting vaginal ring
	formulations—containing combinations of stating and conventional
	antimicrobial drugs—suitable for novel treatment of BV Initial studies will
	evaluate the potential for incorporation and release of selected statin drugs
	and antimicrobial drugs, both singly and in combination, from silicone
	elastomer vaginal rings. Various analytical methods (including DSC, TGA,
	HPLC, etc.) will be developed to characterise/quantify the drugs.
	Microbiological studies will be conducted to explore the effects of stating
	and antibacterial drugs, singly and in combination, on growth of
	lactobacillus and Gardnerella vaginalis.
Project Keywords	Bacterial vaginosis; G. vaginalis; vaginal microbiome; lactobacillus; statins;
	5-nitroimidazole drugs; vaginal rings; vaginal gels

9. NANOMEDICINE AND BIOTHERAPEUTICS

9.1 Peptide-based Nanoparticles for Brain-targeted Gene Delivery

Supervisor	Dr Emma McErlean
Project Overview	Development of novel peptide-based gene delivery systems designed to
	overcome the blood-brain barrier and target brain tissue for gene therapy;
	for the treatment of neurodegenerative disease and cancer.
Project Description:	Gene therapy has the potential to provide therapeutic benefit in treatment
Detailed description of	of neurodegenerative diseases, such as Parkinson's Disease, and cancer.
the project	Delivery into the brain is hampered by the blood-brain barrier (BBB), which
	limits the efficacy of both conventional and novel therapies at the target
	site. Therefore, innovative delivery strategies are required, and
	nanoparticles (NPs) are at the forefront of future solutions. The aim of this
	project is to develop novel peptide-based NPs to efficiently deliver
	therapeutic agents to the brain, overcoming the restrictive properties of the
	BBB. The objectives are: to formulate and systematically characterise the
	physicochemical characteristics of novel peptide-based NPs; analyse the in
	vitro and in vivo functionality of peptide-based NPs for gene delivery to the
	brain and; assess the therapeutic outcomes following delivery of gene
	therapy to the brain via peptide-based nanoparticles.
Project Keywords	Cell Penetrating Peptides, Gene Delivery, Gene Therapy, Nanomedicine,
	Targeted Treatments, Blood Brain Barrier.

9.2 Infection-Responsive Coatings for the Prevention of Medical Device-Associated infections

Supervisor	Dr Matthew Wylie and Professor Colin McCoy
Project Overview	Using our research groups expertise in designing stimuli-responsive
	polymers, this project will develop novel polymeric device coatings
	responsive to device-associated markers to allow detection and/or
	prevention of device-associated infections. This interdisciplinary project will
	provide the student with experience in organic synthesis, materials science,
	and microbiology, using cutting edge microscopy equipment.
Project Description:	Medical devices play a significant role in modern healthcare. However, they
Detailed description of	are prone to bacterial contamination which can facilitate biofilm formation
the project	and subsequent medical device-associated infections.
	Prevention of biofilm development on medical devices is most commonly achieved through use of antimicrobial-eluting coatings but this is often short-lived, uncontrolled, and may give rise to antibiotic resistance. Our research group has focused on the use of 'smart' stimuli-responsive coatings that exploit chemical changes, such as pH, to modify the device surface or control drug release to provide long term protection from biofilm development.
	 This project will continue this strand of exciting research by developing materials capable of responding to specific bacterial biomarkers to produce an infection-responsive coatings for the prevention of medical device-associated infection. Specifically, the project aims to: Identify suitable biomarker targets of clinically relevant bacteria/device-associated infections Synthesise and characterise bacterial-responsive monomeric (and their polymers) candidates suitable for responsive drug delivery systems Assessment of the coatings to prevent bacterial biofilm development using <i>in vitro</i> dynamic flow models.
	Through the development of novel polymeric coatings and assessment using sophisticated infection models e.g. ex vivo urethral/bladder models, the project will develop new strategies to address the rising incidence of device-associated infection.
Project Keywords	Device-associated infections, Biomaterials, Coatings, Materials Science

9.3 Designing Next-generation Urinary Catheter Materials for Clean Intermittent Self-catheterisation Through Control of the Urinary Microbiome

Supervisor	Dr Matthew Wylie and Dr Laura Sherrard
Project Overview	This project aims to characterise the urinary microbiome of intermittent catheter users to determine potential links with catheter-related complications, such as infection. Furthermore, the effect of different catheter materials and coatings will be assessed in conjunction with microbiomics to design next-generation urinary catheter materials for clean intermittent self-catheterisation.
Project Description:	Intermittent urinary catheterisation is used to address chronic urinary
Detailed description of the project	retention in conditions such as spinal cord injury. Intermittent catheters (ICs) are designed as single-use lubricated devices and as such can be associated with a high cumulative cost – the UK's National Health Service (NHS) spends >£88 million annually on ICs. However, in countries such as USA, as many as 83% of patients reuse a single IC up to 20 times before disposal, mainly due to the lack of affordable healthcare, social aspects, or environmental reasons. Reuse increases the risk of IC complications such as discomfort, urethral trauma, and scarring with chronic use. Repeated IC use may also increase risk of developing a catheter-associated urinary tract infection (CAUTI).
	Novel IC coatings are required to reduce complications and facilitate safe reuse of ICs to reduce costs and environmental impact associated with single-use ICs. This project will investigate the relationship between intermittent urinary catheterisation and the urinary microbiome and how changes in the microbiome can impact IC complication risk. The project will use these findings to aid development of next-generation catheter coatings with improved surface properties and resistance to CAUTI. This project will provide experience in microbiology, organic chemistry and materials science.
Project Keywords	Medical device infection, Microbiome, Biomaterial coatings, Materials Science

9.4 Enzyme-triggered Injectable Peptide Hydrogels for the Prevention of Latent Tuberculosis

Supervisor	Dr Garry Laverty
Project Overview	This project is aimed at developing a long-acting injectable technology that will provide prophylaxis against latent tuberculosis in at-risk populations. It will focus on developing a new drug delivery system administered subcutaneously as a single soluble injection. This platform will be developed using our innovative peptide drug delivery system. Upon administration, this solution will transform into a drug-releasing hydrogel depot in response to the action of enzymes present in the skin.
Project Description: Detailed description of the project	Low to middle-income countries (LMIC) account for 95% of tuberculosis infections and deaths. Tuberculosis is currently the second highest infectious killer worldwide, after Covid-19, and is responsible for more deaths than HIV/AIDS. There is an urgent need for new convenient drug delivery systems to combat global health challenges in infectious disease, including tuberculosis. In this project, the aim to develop a long-acting preventative strategy to deliver single or multiple tuberculosis drugs within one injectable hydrogel depot. This strategy should eliminate pill fatigue encountered with existing oral therapies, enable better access to multiple drugs for a longer duration and be simple to administer in LMIC environments. To achieve this we will use a promising peptide-like, peptoid-peptide system. This platform has proven to form a drug-releasing hydrogel implant <i>in situ</i> in response to enzymes present in the subcutaneous skin space. The objective is to select the most promising peptoid-peptide formulation and demonstrate <i>in vivo</i> practicality for at least 84-day drug delivery. This selection will be made by characterising the mechanical (rheology), structural (microscopy, spectroscopy, neutron scattering at large scale facilities), biocompatibility (toxicity, immune response) and stability profiles for each formulation and establishing their relationship to drug release <i>in vitro</i> .
Project Keywords	Hydrogel; drug delivery; formulation; long-acting injectable; peptides; tuberculosis

9.5 Peptide-like Hydrogels as a Long-acting Multipurpose Drug Delivery Platform for Combined Contraception and HIV prevention

Supervisor	Dr Garry Laverty
Project Overview	This project will advance the development of our promising long-acting injectable peptoid-peptide drug delivery technology for use in combined HIV prevention and contraception. It has the potential to provide extended combined protection within one discrete product, empowering women to take control of their sexual health and reducing the incidence of new HIV infection in the most at-risk demographic.
Project Description:	HIV in women, girls and mother-to-child transmission in pregnancy remain
Detailed description of	a significant source of new infections and the needs of females are
the project	inadequately addressed. Our advanced drug delivery system is composed of
	a versatile peptide-like, peptoid-peptide hydrogel depot, which has several
	important advantages as a long-acting injectable platform for sustained
	drug delivery. Unlike existing long-acting formulations used in medicine, e.g.
	formulation. This means multiple drugs can be incorporated within one
	injectable platform without encountering stability issues e.g. aggregation
	due to drug insolubility. The aim of this project is to progress the freeze-
	dried formulation and to consider factors important to medicine regulators
	(e.g. MHRA, EMA). This will involve developing our platform as a freeze-
	dried powder that is readily reconstituted in a water-based solvent prior to
	administration by injection. Pharmaceutical stability to ICH standards,
	without cold chain storage/transport across several climatic zones, is a key
	consideration for effective clinical adoption. We will then progress to testing
	pharmacokinetics and preliminary safety using established in vivo models.
Project Keywords	Hydrogel; drug delivery; formulation; long-acting injectable; peptides; HIV

9.6 Smart Enzyme-triggered Injectable Peptide Hydrogels for the Prevention of Malaria

Supervisor	Dr Garry Laverty
Project Overview	This project is aimed at developing a long-acting injectable technology that will provide malaria prophylaxis to at-risk populations. We will focus on engineering a new drug delivery system administered subcutaneously as a single soluble injection. This platform will be developed using our innovative peptide drug delivery system. Upon administration, this solution will transform into a drug-releasing hydrogel depot in response to the action of enzymes present in the skin.
Project Description: Detailed description of the project	There is an urgent need for new convenient drug delivery platforms to combat global health challenges in infectious disease, including malaria, and especially within low to middle-income countries (LMIC). In 2021, there were 247 million cases of malaria and almost half of the global population was at risk of infection. In this project, the aim to develop a long-acting preventative strategy to deliver single or multiple malaria drugs within one injectable hydrogel depot. This strategy should eliminate pill fatigue encountered with existing oral therapies, enable better access to multiple drugs for a longer duration and be simple to administer in LMIC environments. To achieve this we will use a promising peptide-like peptoid-peptide system. This platform has proven to form a drug-releasing hydrogel implant <i>in situ</i> in response to enzymes present in the subcutaneous skin space. The objective is to select the most promising peptidi-peptide formulation and demonstrate <i>in vivo</i> practicality for at least 84-day drug delivery. This selection will be made by characterising the mechanical (rheology), structural (microscopy, spectroscopy, neutron scattering at large scale facilities), biocompatibility (toxicity, immune response) and stability profiles for each formulation and establishing their relationship to drug release <i>in vitro</i> .
Project Keywords	Hydrogel; drug delivery; formulation; long-acting injectable; peptides; malaria

9.7 Investigating Relationships Between the Gut Microbiome and the Metabolism of Commonly Prescribed Drug Compounds

Supervisor	Dr Stephen Kelly
Project Overview	This project will investigate the effect of commonly prescribed prescription
	medicines on the gut microbiome. It will also examine the effect of different
	microbiome profiles on drug metabolism, such as those seen in different
	disease states, informing future personalised medicine prescribing.
Project Description:	The human gut is home to trillions of microorganisms and their genes,
Detailed description of	known as the gut microbiome. This microbiome has a profound effect on
the project	human health, as well as on the metabolism of pharmaceuticals.
	Prescription medicines, in particular antibiotics, have been shown to disrupt
	the gut microbiome, creating a state of dysbiosis. However, a considerable
	amount remains unknown about the effect of non-antibiotic medicines on
	the gut microbiome, and why people respond differently to certain
	medicines.
	This project aims to investigate the effect of non-antibiotic prescription
	medicines on the gut microbiome. It also aims to investigate the effect of
	different microbiome profiles on the metabolism of various drugs
	compounds. Project aims will be achieved through the use of an established
	in vitro gut screening model, and downstream microbiome and metabolite
	analysis.
	The successful candidate will join a dynamic research group focused on the
	analysis and functional characterisation of microbiomes from various
	niches, to help investigate the link between the microbiome and
	metabolism of drugs. This project will involve wet lab experiments, as well
	as considerable bioinformatics analysis. Full technical training will be
	provided, providing skills which will help prepare the student for a career in
	a variety of sectors.
Project Keywords	Microbiome, drug metabolism, personalised medicine, human health

9.8 Nanoparticle Delivery of Antibiotics for Treatment of Pulmonary Infection

Supervisor	Dr Vicky Kett and Professor Michael Tunney
Project Overview	The aim of the project is to develop novel nanoparticles encapsulating
	antibiotic that can be used to deliver payload in a targeted manner to the
	lung for treatment of chronic respiratory infection.
Project Description:	Antimicrobial resistance (AMR) poses a major global risk to human health
Detailed description of	by causing death, disability, longer hospitalisations, and increased
the project	healthcare costs. In respiratory diseases such as bronchiectasis Cystic
	Fibrosis (CF) and COPD, the lungs are colonized by diverse polymicrobial
	bacterial communities. Inhaled antibiotics are currently only used in the
	treatment of chronic P. aeruginosa infection in CF and a major challenge
	with such treatment is antibiotic penetration into sputum. We have
	developed formulations with excellent powder properties for pulmonary
	delivery. We have extensive data to show that several antibiotics used in
	the treatment of chronic lung infection can be encapsulated in these
	Tormulations.
	The aim of this project will be to determine the activity of nanoparticle encapsulated antibiotics against a wide range of pathogens detected in the lung microbiome. In vitro activity will be determined using planktonic and biofilm models of infection under aerobic and anaerobic conditions, similar to those found in sputum in the people with longterm respiratory conditions. Depending on results, further formulation studies may be undertaken to optimize antimicrobial activity. Extensive training will be provided throughout the project as part of internationally renowned research teams.
	Extensive training will be provided in all aspects of the fundamentals of nanoparticle manufacture together with physicochemical methods required
	to optimise the manufacturing process, and to characterise inhaled
	antibiotic products such as thermal stability and microbiological activity.
Project Keywords	Nanoparticles, Respiratory infection, antibiotic

9.9 Characterisation of Novel Therapeutic Targets for the Treatment of Tumour Metastasis

Supervisor	Dr Roberta Burden
Project Overview	Elevated expression of cathepsin proteases has been associated with poor clinical outcomes across many different cancer types. This project will examine the mechanistic role of cathepsins in tumour biology, enhancing
	our understanding of how they promote tumour cell metastasis and aiding
	the development of new targeted therapies.
Project Description:	There is a major unmet clinical need to develop improved treatment
Detailed description of	strategies for patients with recurrent and metastatic cancer, which can only
the project	be facilitated by better understanding of the biology driving disease
	progression, enabling the development of new targeted therapies.
	Elevated cathepsin expression is associated with several hallmarks of cancer
	including increased tumour cell proliferation, angiogenesis, invasion and
	metastasis. The main hypothesis of this project is:
	Cathepsins promote an aggressive tumour cell phenotype, contributing to poor clinical outcomes. Targeting cathepsins can offer therapeutic benefit to patients who exhibit disease recurrence and metastasis.
	We plan to examine this by three main objectives:
	1. Investigate the contribution of cathepsin activity on the metastatic phenotype of tumour cells.
	2. Examine the impact of cathepsin targeting on the tumour microenvironment.
	3. Determine the significance of cathepsin targeting on the anti-tumour immune response by enhancing immune cell cytotoxicity.
	Collectively, this research could lead to a new paradigm in precision
	medicine treatment tumours by targeting aberrant cathepsin activity
	associated with many different malignancies. This could have significant
	impact in the context of reducing metastatic spread of tumours, as
	metastatic cancers have significantly poor outcome, with no targeted
	treatment strategies.
Project Keywords	Cancer, invasion, metastasis, therapeutic, protease, immunotherapy

9.10 Bacteriophage Control of Oral Microbiota for the Prevention and Treatment of Oral Disease

Supervisor	Dr Timofey Skvortsov and Professor Gerry McKenna
Project Overview	Bacteriophages are bacterial viruses that demonstrate high specificity and
	are able to quickly and efficiently kill pathogenic bacteria without affecting
	healthy microbiome. This project will investigate the use of bacteriophages
	for the prevention and treatment of bacterial infections of the oral cavity.
Project Description:	The oral microbiome is a complex ecosystem consisting of multiple species
Detailed description of	of bacteria, fungi, and viruses. The microbiome composition changes
the project	depending on various factors. Some of the reorganisations of the
	microbiome might lead to the development of bacterial infections, including
	dental caries and periodontitis, which constitute a global public health
	problem. Although antibiotic treatments are available, they are not always
	effective in elimination of bacterial biofilms and their frequent use can lead
	to the emergence of antibiotic-resistant strains. An attractive alternative
	approach that has been gaining popularity recently is bacteriophage
	therapy – the use of bacterial viruses (bacteriophages) for prophylaxis and
	treatment of infectious diseases. The aim of this study is to investigate the
	potential of bacteriophages in prevention and treatment of bacterial
	infections of the oral cavity. The following objectives will be pursued:
	1 Bioinformatics analysis of newly generated and/or publicly available
	notagenemes for the identification of key bacteria implicated in oral
	infections
	Intections.
	2. Isolation and characterisation of bacteriophages and their lytic enzymes
	against the key pathogens identified at Stage 1.
	3. Investigation of antibacterial activity of bacteriophages against the
	selected bacteria <i>in vitro</i> and in the available model systems.
	4. Formulation of prophylactic antibacterial gels based on bacteriophage
	cocktails.
Project Keywords	Bacteriophage, microbiome, caries, periodontitis, prevention

10. CARDIOVASCULAR MEDICINE

10.1 Engineering the Future: Vascularized Cardiac Organoids as a Platform for Studying Diabetic Cardiovascular Complications

Supervisor	Professor Andriana Margariti
Project Overview	Under Professor Margariti's supervison at Queen's University Belfast, this PhD program in regenerative medicine focuses on developing next- generation of vascularized cardiac organoids using natient-specific induced
	pluripotent stem cells. The research aims to unravel diabetic cardiac
	complications and create personalized therapies, offering unparalleled growth in cardiovascular research, and a unique training opportunity for the
	PhD student.
Project Description:	The burgeoning field of regenerative medicine and cardiology has led to the
Detailed description of	development of next generation vascularized cardiac organoids, offering
the project	unprecedented opportunities to study diabetic cardiac complications.
	Under the visionary leadership of Professor Margariti at the Wellcome-
	Wolfson Institute for Experimental Medicine (WWIEM) at QUB, this
	groundbreaking research utilizes advanced cell reprogramming techniques
	nathonhysiological mechanisms underlying diabetic cardiac complications
	and payes the way for developing personalized therapeutic strategies
	Through this pioneering work, the team is setting new standards in using
	patient-derived iPSCs for cardiac disease modelling, offering hope for
	targeted and effective treatments for diabetes-related cardiac disorders.
	The PhD program provides a unique opportunity for growth and
	development in regenerative medicine and cardiovascular research. The
	PhD student will engage in cutting-edge research at the forefront of
	regenerative medicine and cardiovascular disease, developing expertise in
	iPSC technology and cardiovascular lineage differentiation. They will
	collaborate with leading experts, benefit from close-mentorship, and access
	advanced research facilities and resources at QUB. The program provides
	opportunities to publish and present research indings in highlinpact
	development activities such as workshops and seminars, and interact with
	a diverse community of scholars to foster interdisciplinary learning. This
	comprehensive training and experience prepare students for successful
	careers in academia, industry, or clinical research.
Project Keywords	Regenerative Medicine; Cardiovascular Disease, Diabetes, Vascular
	Complications; Patient Specific iPSCs; Next Generation of Vascularised
	Cardiac Organoids

10.2 Overwriting Blood Vessel Identity to Prevent Coronary Graft Failure

Supervisor	Dr Denise McDonald
Project Overview	Cardiovascular disease (CVD) is the leading cause of death worldwide.
	Coronary heart disease (CHD) is the most common type of CVD and is
	responsible for 10 million deaths globally every year. CHD is caused by
	thrombotic occlusion of the blood vessels that supply the heart, which leads
	to local tissue ischaemia and irreversible damage to the underlying
	cardiomyocytes. Currently, treatment relies on stenting or coronary artery
	bypass graft (CABG) surgery whereby a blood vessel is removed from the
	(radial artery) and used to bypass the obstructed vessel, allowing re-
	vascularisation of the damaged heart. While very successful this procedure
	is limited by the development of accelerated atherosclerosis, a condition
	called vein graft disease which leads to 75% of grafts being occluded within
	10 years. The reasons for this accelerated disease progression are not well
	understood. Recently, we have identified several novel targets that we
	hypothesise could be used therapeutically to enhance blood vessel stability
	to prevent graft failure or significantly extend its efficiency. Ethical approval
	and a well-rehearsed SOP for collecting and processing human samples will
	facilitate the speed of this project.
Project Description:	OBJECTIVE: Using our unique expertise in vascular and molecular/ cell
Detailed description of	biology, this study will investigate the underlying mechanisms that disturb
the project	healthy endothelial cell (EC) function in patients with cardiovascular disease.
	Querell outcomes of research project. This study will elucidate povel ways
	to promote the long-term survival of EC and provent the deleterious
	consequences of graft failure
	AIMS AND EXPERIMENTAL DESIGN
	Aim 1: Investigate the function of novel proteins important for promoting
	arterial properties in EC.
	Aim 2: Investigate the impact of these novel targets on EC biology using
	genome engineering.
	Aim 3: Investigate how these targets are altered in disease using in vitro
	models of vascular disease.
	history techniques which will be transferable to a wide range of disciplines
	and research areas
	Training will be provided:
	1. Primary cell culture of EC.
	2. Molecular biology techniques such as RNA isolation, PCR, protein
	extraction and western blot, immunocytochemistry and sub-cellular
	tracking using GFP/ RFP constructs.
	3. Gene transfer techniques and reporter assays to investigate the role of
	key signalling pathways implicated in disease models.

	4. Key skills: Data mining and Gene expression profiling and analysis; Data
	analysis; Critical analysis of the literature; Presentation skills; scientific
	writing.
	Overall, the proposed project will provide training in a wide range of
	laboratory skills essential for a future career in science.
Project Keywords	cells (EC), nitric oxide, oxidative stress, vein graft disease, coronary artery
	bypass surgery (CABG)

10.3 Neuronal vs Vascular Clock Disruption in Early Diabetic Retinopathy

Supervisor	Dr Eleni Beli and Professor Tim Curtis
Project Overview	Diabetic retinopathy (DR) is a major diabetes complication causing
	blindness. The disease involves retinal vessel dysfunction and ischemia.
	Dysregulation of the circadian clock, especially Bmal1 protein, may impact
	DR. This project investigates the roles of neuronal versus vascular clock
	disruption in DR using mice models, aiming to identify targeted therapies.
Project Description:	Diabetic retinopathy (DR), a leading cause of blindness, is the most common
Detailed description of	complication of diabetes, manifesting as a microvascular disease with
the project	retinal vessel damage, ischemia, and uncontrolled vessel growth. The
	pathogenesis of DR is complex and not fully understood. However, the
	circadian clock, which regulates cellular functions by aligning gene
	expression with the daily light/dark cycle, is known to be dysregulated
	before retinal vascular complications arise. The role of Bmal1, a circadian
	clock protein, in DR is unclear, with studies suggesting that its deletion in
	anterent cens could variably affect the disease. It is proposed that the
	neoroscularization yet the specific roles of Bradd in retinal vessels versus
	neuronal cells in early DR stages remain uncertain
	This research project aims to elucidate these roles by creating murine
	models with Bmal1 selectively deleted from retinal neurons (Ret-Bmal1 KO)
	or vessels (Endo-Bmal1 KO) and comparing DR progression. Structural and
	functional criteria will be assessed at 2, 4, and 6 months of diabetes duration
	using histological methods, optical coherence tomography (OCT-A),
	fluorescence angiography, and electroretinography. Subsequent in vitro co-
	cultures will validate the results. Understanding the impact of clock
	dysregulation on DR progression could reveal novel therapeutic targets and
	aid in designing targeted therapies for DR prevention.
Project Keywords	Diabetic retinopathy, circadian rhythms, Bmal1, vascular clock, neuronal
	clock

CONTACT INFORMATION

Postgraduate Research Solutions Centre (PGRSC)

The Postgraduate Research Solutions Centre is responsible for supporting the 4 Year International PhD and any questions you have may be directed to Mrs Lynne Spence at the Centre.

Location

The Thomas J Moran Graduate School Lynn Building Main Site

PGRSC Contact Details

Mrs Lynne Spence (Project Manager)

Email: <u>l.spence@qub.ac.uk</u> Email: <u>pgrsc@qub.ac.uk</u>