Skip to Content

Advanced Thermomechanical Modelling for Predictive Deformation Control in Composite Injection Overmoulding

School of Mechanical and Aerospace Engineering | PHD
Funding
Funded
Reference Number
MAE2025/26AA
Application Deadline
6 January 2025
Start Date
1 October 2025

Overview

This PhD project aims to develop a robust thermomechanical model for composite injection overmoulding, a process critical to efficient, sustainable manufacturing in industries such as aerospace and automotive. By enhancing the predictive capabilities for deformation and insert dislocation, the project aims to optimise process parameters, reducing material waste and energy consumption. Collaborating with Collins Aerospace, the student will have the opportunity to contribute to high-impact research while gaining practical industry experience through a placement at the company.

Project Description and Objectives:
Composite injection overmoulding, a cutting-edge technology, enables high-volume, highly automated production of complex shapes with embedded continuous fibre reinforcements. However, challenges such as deformation and dislocation of composite inserts under high pressures and temperatures pose significant issues for the mechanical integrity of the final product. Traditional simulation tools struggle to accurately predict these thermomechanical interactions, resulting in inefficiencies. This project aims to fill this gap by developing an advanced multi-scale thermomechanical model that simulates variable injection pressures and temperature gradients, minimising deformation The developed modelling capabilities will be applied in a case study proposed by Collins Aerospace, aimed at predicting the thermomechanical response of a carbon fibre composite insert within an overmoulded aircraft interior component. This will showcase the direct relevance of this fundamental research to real-life applications. Key objectives include:

Developing a multi-scale thermomechanical model incorporating CFD for non-Newtonian polymer melt flow.

Conducting rheological analysis to capture polymer flow behaviours, refining the model's accuracy.

Using Finite Element Analysis (FEA) to predict final solid-state mechanical properties.

Manufacturing and characterising an aircraft interior component to validate the model results.

Integrating machine learning to optimise model predictions and adapt parameters in real-time.

This PhD will leverage prior collaborative research with Collins Aerospace, including Project COMINO (2016-2019) and a recent Knowledge Transfer Partnership, enhancing both industrial application and academic insights into automated manufacturing of composite components.

Key transferable skills developed :
The project will equip the PhD candidate with expertise in multi-scale thermomechanical modelling and Finite Element Analysis (FEA), skills that are highly sought after in aerospace, automotive, and materials research. The integration of machine learning will provide experience in data analysis for model optimisation, a versatile skill set applicable across many engineering disciplines. Through industry collaboration with Collins Aerospace, the student will gain invaluable skills in applied research, problem-solving, and working within interdisciplinary teams, strengthening their employability in both academia and industry. The manufacturing aspects, will familiarise the candidate with the state-of-the-art automated composite manufacturing processes.

Impact and Future Career Prospects:
This PhD project offers direct industry collaboration with Collins Aerospace, providing the candidate with real-world experience and insights into aerospace manufacturing. The advanced skills in thermomechanical modelling, FEA, and machine learning acquired during this project will open pathways for careers in research and development roles in high-tech industries, especially aerospace and automotive. The knowledge and networks gained through this PhD position will support career progression in academia, industrial research, or consultancy roles, particularly within sectors focused on advanced materials and manufacturing technologies.

Innovation and Interdisciplinarity:
This project stands at the forefront of innovation by integrating advanced computational analysis with multi-scale thermomechanical modelling for composite injection overmoulding, alongside practical overmoulding experiments. Experimental trials will be conducted at both test coupon and demonstrator levels, including an aircraft interior component. This interdisciplinary approach combines fluid dynamics, materials science, computational modelling, and applied experiments, addressing both theoretical and practical challenges in aerospace manufacturing. The candidate will work within an exciting overlap of engineering and data science, addressing practical manufacturing challenges. Collaborating with Collins Aerospace, the student will tackle current industry problems while advancing the academic field, aligning closely with sustainability and cost-efficiency goals.

Funding Information

UK studentships - cover tuition fees and include a maintenance stipend of £19,237 per annum.
This project offers an additional top-up stipend of £5,500 per year, and together with the maintenance stipend will give a take home pay of £24,737 per annum.
A UK studentship is open to UK and ROI nationals, and to EU nationals with settled status in the UK, subject to meeting specific nationality and residency criteria.
DfE studentship eligibility information can be viewed at: https://www.economy-ni.gov.uk/publications/student-finance-postgraduate-studentships-terms-and-conditions

Project Summary
Supervisor

Dr Ali Aravand


Mode of Study

Full-time: Full Time


Apply now Register your interest

Mechanical Engineering overview

Our society needs exceptional engineers who can understand, create and harness technology to address our shared global challenges. Without these individuals our long-term success as technologically advanced societies and economies will be diminished. Undertaking a PhD in the School of Mechanical & Aerospace Engineering will enable you to make a real difference, positively impacting your career and through your research improving engineering methods and practice, and ultimately society.

Research undertaken by PhD students in the School of Mechanical & Aerospace Engineering forms a critical part of our research portfolio. Our research portfolio is ranked 24th in the UK with 96% of our Engineering research rated as world-leading or internationally excellent [REF 2021/ Times Higher Education]. What is more the REF2021 assessment, which is carried out by panels of academics and international experts, rated over 99% of the university research environment as world-leading or internationally excellent. Within this environment our PhD students research within the broad topics of design, materials, manufacturing, and energy.
Joining us as a PhD student you will be part of a dynamic environment and will study alongside students from many countries worldwide. It is a lively community of over 100 students, in which you will have the opportunity to develop both career and life skills, for example by participating in cohort training and mentoring programmes and student led social and cultural activities.

A PhD studentship is an investment in your personal development, worth over £100,000. Many of our PhD graduates take-up academic roles, while others go on to play leading roles in industry or become entrepreneurs. A PhD provides many benefits, among others it provides a range of “transferable skills”, such as independent and critical thinking, analytical and problem solving skills, leadership, and self-confidence. Because of these developed characteristics we see that many industry leaders hold a PhD. You will likely get a higher salary after graduation from a PhD than you do three years after an undergraduate degree. More importantly, you will get a different type of job and likely make progress faster through promotion and reward mechanisms. This, of course, depends on your ambition, but a PhD builds an exceptional career foundation.

Mechanical Engineering Highlights
Industry Links
  • The school boasts a number of strategic partnerships with world leading engineering companies. These partnerships enable our postgraduate students to forge vital links with industrial collaborators throughout their studies, gaining valuable exposure and real-world feedback. For example, the WTech Research Centre is working alongside Wrightbus to develop innovative and crucial global transport solutions. A dedicated team partnered with Rolls-Royce, is developing novel design approaches to deliver the aircraft of tomorrow. These partnerships, amongst others, mean PhD students can begin making real industry impact from year one of their studies.
World Class Facilities
  • The school encompasses world class facilities which are tailored to meet the needs of our students and research specialisms. Our materials testing laboratories can characterise a wide range of materials, including polymers and advanced composites. Our High Performance Computing (HPC) facility supports demanding numerical analysis such as Finite Element Analysis and Computational Fluid Dynamics. State-of-the-art manufacturing capabilities, including additive manufacture and robotics are powering research into The Factory of the Future.
    It is cutting edge facilities such as these, that give our PhD graduates a unique set of skills to enhance their future careers.
Internationally Renowned Experts
  • Undertaking a research degree in the School of Mechanical & Aerospace Engineering at Queen’s, you will work with and be supervised by world-leading experts in their respective fields.
Student Experience
  • An enhanced student experience is at the heart of what we do. As part of a diverse community of over 100 PhD students, you’ll be a valued part of a vibrant research community. You will benefit from a supportive mentoring program, a wide range of training opportunities and avail of the social events and wellbeing initiatives rolled out by our student-led Research Culture Committee.
Key Facts

Research students are encouraged to play a full and active role in relation to the wide range of research activities undertaken within the School and there are many resources available including:

  • The School has strategic research partnerships with a number of globally leading engineering companies, e.g. Rolls-Royce, Wrightbus, in which researchers undertake cutting edge and impactful research within multidisciplinary teams.
  • Access to state-of-the-art research laboratories and computing facilities (Northern Ireland High performance computing), along with office accommodation and opportunity to work within our aligned innovation centres
  • Access to the Queen’s University Postgraduate Researcher Development Programme and a wide range of personal development and specialist training courses.
  • A vibrant research community with opportunities to socialise, integrate and personally develop through student and university organised events.
  • Excellent graduate prospects ranging from academic, industrial to entrepreneurial opportunities.

Course content

Career Prospects

Employment after the Course
Dedicated to translating our research innovation into real world industrial and societal benefit. Many of our PhD graduates have moved into academic and research roles in Higher Education while others go on to play leading roles in industry, industry or become entrepreneurs. Queen's postgraduates reap exceptional benefits .

People teaching you

Dr Declan Nolan
Doctoral Programme Director
Mech & Aerospace Engineering
Email: d.nolan@qub.ac.uk

Course structure
Undertaking a PhD presents the opportunity to carry out novel research guided by dedicated supervisory teams who are built on expertise.

A PhD programme runs for 3-4 years full-time or 6-8 years part-time. Students can apply for a writing up year should it be required. Supervisors will offer feedback on the research work at regular intervals throughout the period of registration on the degree.

During the lifecycle of your research programme, you will be required to reach key milestones:

Initial Review – within three months (FTE) of first registration. A light touch progress meeting to establish the feasibility of the project and the research plan.

Differentiation – within nine months (FTE) of first registration. You will remain an ‘undifferentiated PhD student’ until this milestone has been completed wherein you will be required to satisfy academic staff that you are capable of undertaking a research degree.

Annual Progress Reviews – yearly thereafter Differentiation, requires students to present their work in writing and orally to a panel of academics. Successful completion of this process will allow students to register for the next academic year.

Viva voce [oral examination] - the final assessment of the doctoral degree is both oral and written. Students will submit their thesis to an internal and external examining team who will review the written thesis before inviting the student to orally defend their work at a Viva Voce.

Over the course of study, you can attend postgraduate skills training organised by the Graduate School, with opportunities to attend conferences and further training organised through your supervisor. Further growth and development opportunities are supported by community events (seminars, workshops, competitions, conferences etc) which are intentionally designed to provide platforms for showcasing your research to wider audiences.

Entrance requirements

Graduate
The minimum academic requirement for admission to a research degree programme is normally an Upper Second Class Honours degree from a UK or ROI HE provider, or an equivalent qualification acceptable to the University. Further information can be obtained by contacting the School.

International Students

For information on international qualification equivalents, please check the specific information for your country.

English Language Requirements

Evidence of an IELTS* score of 6.0, with not less than 5.5 in any component (*taken within the last 2 years) is required.

International students wishing to apply to Queen's University Belfast (and for whom English is not their first language), must be able to demonstrate their proficiency in English in order to benefit fully from their course of study or research. Non-EEA nationals must also satisfy UK Visas and Immigration (UKVI) immigration requirements for English language for visa purposes.

For more information on English Language requirements for EEA and non-EEA nationals see: www.qub.ac.uk/EnglishLanguageReqs.

If you need to improve your English language skills before you enter this degree programme, INTO Queen's University Belfast offers a range of English language courses. These intensive and flexible courses are designed to improve your English ability for admission to this degree.

Tuition Fees

Northern Ireland (NI) 1 TBC
Republic of Ireland (ROI) 2 TBC
England, Scotland or Wales (GB) 1 TBC
EU Other 3 £25,600
International £25,600

1 EU citizens in the EU Settlement Scheme, with settled or pre-settled status, are expected to be charged the NI or GB tuition fee based on where they are ordinarily resident, however this is provisional and subject to the publication of the Northern Ireland Assembly Student Fees Regulations. Students who are ROI nationals resident in GB are expected to be charged the GB fee, however this is provisional and subject to the publication of the Northern Ireland Assembly student fees Regulations.

2 It is expected that EU students who are ROI nationals resident in ROI will be eligible for NI tuition fees. The tuition fee set out above is provisional and subject to the publication of the Northern Ireland Assembly student fees Regulations.

3 EU Other students (excludes Republic of Ireland nationals living in GB, NI or ROI) are charged tuition fees in line with international fees.

All tuition fees quoted are for the academic year 2021-22, and relate to a single year of study unless stated otherwise. Tuition fees will be subject to an annual inflationary increase, unless explicitly stated otherwise.

More information on postgraduate tuition fees.

Mechanical Engineering costs

There are no specific additional course costs associated with this programme.

Additional course costs

All Students

Depending on the programme of study, there may also be other extra costs which are not covered by tuition fees, which students will need to consider when planning their studies . Students can borrow books and access online learning resources from any Queen's library. If students wish to purchase recommended texts, rather than borrow them from the University Library, prices per text can range from £30 to £100. Students should also budget between £30 to £100 per year for photocopying, memory sticks and printing charges. Students may wish to consider purchasing an electronic device; costs will vary depending on the specification of the model chosen. There are also additional charges for graduation ceremonies, and library fines. In undertaking a research project students may incur costs associated with transport and/or materials, and there will also be additional costs for printing and binding the thesis. There may also be individually tailored research project expenses and students should consult directly with the School for further information.

Bench fees

Some research programmes incur an additional annual charge on top of the tuition fees, often referred to as a bench fee. Bench fees are charged when a programme (or a specific project) incurs extra costs such as those involved with specialist laboratory or field work. If you are required to pay bench fees they will be detailed on your offer letter. If you have any questions about Bench Fees these should be raised with your School at the application stage. Please note that, if you are being funded you will need to ensure your sponsor is aware of and has agreed to fund these additional costs before accepting your place.

How do I fund my study?

1.PhD Opportunities

Find PhD opportunities and funded studentships by subject area.

2.Funded Doctoral Training Programmes

We offer numerous opportunities for funded doctoral study in a world-class research environment. Our centres and partnerships, aim to seek out and nurture outstanding postgraduate research students, and provide targeted training and skills development.

3.PhD loans

The Government offers doctoral loans of up to £26,445 for PhDs and equivalent postgraduate research programmes for English- or Welsh-resident UK and EU students.

4.International Scholarships

Information on Postgraduate Research scholarships for international students.

Funding and Scholarships

The Funding & Scholarship Finder helps prospective and current students find funding to help cover costs towards a whole range of study related expenses.

How to Apply

Apply using our online Postgraduate Applications Portal and follow the step-by-step instructions on how to apply.

Find a supervisor

If you're interested in a particular project, we suggest you contact the relevant academic before you apply, to introduce yourself and ask questions.

To find a potential supervisor aligned with your area of interest, or if you are unsure of who to contact, look through the staff profiles linked here.

You might be asked to provide a short outline of your proposal to help us identify potential supervisors.

Download Postgraduate Prospectus