Skip to Content

Understanding the environmental impact of constructing the built environment

School of Natural and Built Environment | PHD

Applications are now CLOSED
Funding
Funded
Reference Number
SNBE-2024-SC1
Application Deadline
30 June 2024
Start Date
1 October 2024

Overview

Construction provides vital infrastructure to allow the needs of the people on our planet to be met. Therefore new construction will be required globally if we are to achieve our sustainable development goals and build a world that is equitable and allows both humans and the planet to thrive. However, the built environment currently contributes 40% of energy and process-related CO2 emissions, is responsible for 50% of extracted materials, generates 62% of waste in the UK (UKGBC 2023) and is one of 3 systems that cause 80% of global biodiversity loss (McNamara et al. 2023). The successful candidate will work with Dr Cox to develop a PhD project that will investigate how we can use whole life analysis of carbon and other environmental impacts to inform how we reduce the environmental impact of constructing our built environment.

Globally we are exceeding 6 of the 9 planetary boundaries that maintain the stability and resilience of our Earth (Richardson et al. (2023). That means that in addition to emitting too many greenhouse gases into the atmosphere, we are also overloading our watercourses with nutrients, polluting the world with synthetic chemicals, over-extracting natural resources and interfering with precious ecosystems. Coupled with this, our understanding of the interrelatedness of all of these systems is increasing. We now know we won’t save our planet by reducing greenhouse gas emissions alone, we need to support and preserve biodiversity and global ecosystems.

Construction provides vital infrastructure to allow the needs of all the people on our planet to be met and will be essential if we are to adapt to climate impacts and achieve our sustainable development goals. However, the built environment currently contributes 40% of energy and process-related CO2 emissions, is responsible for 50% of extracted materials and generates 62% of waste in the UK (UKGBC 2023). It also is one of 3 systems that cause 80% of global biodiversity loss (McNamara et al. 2023).

The successful candidate will work with Dr Cox to develop a PhD project that will investigate how we can use whole life analysis of carbon and other environmental impacts to inform reducing the impact of constructing our built environment. Depending on the previous experience of the candidate, potential topics for the PhD are listed below. However, this list is not exhaustive, and further topics could be considered by the successful candidate.
• Quantifying whole life carbon for a range of buildings across the UK and Ireland, assessing the uncertainty associated with these calculations and determining the significance of this uncertainty in decision making in design (Pomponi et al., 2024)
• Using material flow analysis to calculate the carbon footprint and biodiversity impacts of the construction sector in Northern Ireland (Drewniok et al., 2022, O’Hegarty and Kinnane, 2022)
• Developing a methodology to quantify the ecological and biodiversity impacts of key construction materials, including, but not limited to, cement, steel, timber, sand and aggregates. (McNamara et al. 2023 and Richardson et al. 2023)
• Determining the feasibility of using a large existing building in Belfast, that is due to be demolished, as a material bank for circular construction and investigating the potential for this project to link with other projects to create a construction materials hub.
• Investigating the performance gap between predicted and actual operational energy for a portfolio of existing commercial buildings, forecasting likely future energy and carbon demand and integrating this assessment into a whole life carbon assessment of each building.
• Comparing the main structural materials in the context of a building to assess performance for embodied ecological and biodiversity impacts as well as embodied carbon (Hawkins et al. 2021)
• Comparing and contrasting the RICS methodology for whole life carbon assessment in buildings with the EU Levels framework to determine potential consequences for embodied carbon regulation in Northern Ireland.
• Assessing the retrofit works required to optimise whole life carbon use in domestic buildings in Belfast, by considering both the embodied carbon of retrofit and improved operational performance.

References

Drewniok, M.P., Azevedo, J.M.C., Dunant, C.F., Allwood, J.M., Cullen, J.M., Ibell, T. & Hawkins, W., 2022. Mapping Material Use and Embodied Carbon in UK Construction. SSRN Electronic Journal, 197(May).

Hawkins, Cooper, Allen, Roynon and Ibell (2021) Embodied carbon assessment using a dynamic climate model: Case-study comparison of a concrete, steel and timber building structure. Structures, (33) 90-98. [Available at: https://doi.org/10.1016/j.istruc.2020.12.013]

McNamara, E.; Macnair, L.; Winslow, P; Martin, B.; Roberts, A. & De Matei, R. (2023) The Embodied Biodiversity Impacts of Construction Materials, Research Report. Expedition Engineering. [Available at: https://expedition.uk.com/project/embodied-biodiversity-impacts-of-construction-materials/]

O’Hegarty, R. & Kinnane, O., 2022. Whole life carbon quantification of the built environment: Case study Ireland. Building and Environment, 226 (September), p.109730. [Available at: https://doi.org/10.1016/j.buildenv.2022.109730]

Pomponi, F.; De Wolf, C. & Moncaster, A. (2024) Embodied Carbon in Buildings : Measurement, Management, and Mitigation. Springer; 2018. [Available at: https://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=1696865&site=ehost-live]

Richardson, K. et al. (2023) Earth beyond six of nine planetary boundaries. Science Advances, DOI:10.1126/sciadv.adh2458

UKGBC (2024) Embodied Ecological Impacts [Available at: https://ukgbc.org/our-work/topics/embodied-ecological-impacts]

ESSENTIAL BACKGROUND OF CANDIDATE

Minimum of a strong upper second class (2.1) honours degree (completed or in the final stages of completion) in Civil or Structural Engineering, Architecture or other relevant disciplines.

RESEARCH PROPOSAL - INSTRUCTIONS FOR APPLICANTS

Please note that applicants are not required to upload a research proposal as part of the application. Instead, interested candidates should upload a copy of their CV and a covering letter outlining their motivation to undertake a PhD on this theme, and describing any relevant experience in:

Civil or Structural Engineering, Architecture or other relevant disciplines
Life cycle assessment
Whole life carbon analysis of infrastructure or buildings
Designing the built environment for low embodied carbon

APPLICATION PROCEDURE

• To apply, visit https://dap.qub.ac.uk/portal/user/u_login.php (link to the QUB Direct Application Portal)
• Apply for Degree of Doctor of Philosophy in ‘Civil Engineering’ at Queen's University Belfast, School of Natural and Built Environment.
• State name of lead supervisor on application form ‘Dr Siobhan Cox’.
• State the intended source of funding on your application as EPSRC.
• Include your CV and a covering letter.

Funding Information

PLEASE NOTE: These EPSRC studentships are open only to candidates who are classed Home, UK or Republic of Ireland and candidates with settled status or ILTR. International candidates are not eligible. The value of an award includes the cost of approved fees as well as maintenance support (stipend). As an indicator, the level for 2023/2024 is currently £18,622.

Please note that this research project is one of several advertised projects at Queen’s which are in competition for funding. The selection will be based on the projects which receive the best application.

Project Summary
Supervisor

Dr Siobhan Cox

More Information

s.cox@qub.ac.uk

Research Profile


Mode of Study

Full-time: 3.5 years


Funding Body
EPSRC
Apply now Register your interest

Civil Engineering overview

The research centre will address the topical grand challenges in civil engineering field, building on existing and developing new international collaborations. Financial support to meet these challenges will be acquired through both internal University initiatives (for enhanced infrastructure and facilities) and external funding from government grants, charities and direct industrial support.

Research will address the grand challenges of energy, carbon, clean water, infrastructure; exploring extremes and defining new limits. Key research areas include:

Marine renewable energy
Groundwater and environmental systems
Geotechnics
Intelligent infrastructure and high performance structures
Energy efficient materials

Mode of study / duration

Registration is on a full-time or part-time basis, under the direction of a supervisory team appointed by the University. You will be expected to submit your thesis at the end of three years of full-time registration for PhD, or two years for MPhil (or part-time equivalent).

Civil Engineering Highlights
Global Opportunities
  • Civil Engineering brings together researchers from spatial planning, architecture, geography, paleoecology and civil engineering to tackle some of the world's most pressing urban and environmental challenges.
    https://www.qub.ac.uk/schools/NBE/Research/
Industry Links
  • Civil Engineering is led by a Head of Discipline supported by team leaders with responsibility for maintaining excellence in its research groups. One of these, the Intelligent and Sustainable Infrastructure Group (ISIG - including low carbon structural materials) has several joint projects with international Centres of Excellence. Further information about our research groups can be found on the School website.
    https://www.qub.ac.uk/schools/NBE/Disciplines/civil-and-structural-engineering/
World Class Facilities
  • The School of Natural and Built Environment has a range of state-of-the-art facilities to support our outstanding students and staff conducting leading-edge research and teaching. These include a heavy structures laboratory, rheology laboratory, the Belfast Wave Flume and the Portaferry coastal wave basin.
    https://www.qub.ac.uk/schools/NBE/Research/facilities-infrastructure/
Student Experience
  • Postgraduates form an intrinsic part of our research community and are actively involved in the School's cross-disciplinary Research Groups, enabling the creation of synergies in areas such as sustainability, infrastructure, culture, design and heritage. The School is engaged with major research themes such as urbanism, community, heritage, population and climate change which contributes to the development of policy and practice both locally and globally. Visit our School website and read about the exciting research being undertaken by our current PhD students:
    https://www.qub.ac.uk/schools/NBE/Study/PostgraduateResearch/
Key Facts

Civil Engineering at Queens is in the Top 200 in the World QS Rankings (2022).

  • Civil Engineering is ranked 20th in the UK (Times and Sunday Times Good University Guide 2022).

Course content

Research Information

Associated Research
The dynamic nature of this research has been key to the our success in attracting significant funding from UK research councils, government departments and agencies.
The Civil Engineering Research Centre (CERC) is a leading international, interdisciplinary centre that enables scientists and engineers from all areas of civil engineering investigation to work on diverse, yet complementary research.
A special feature of the CERC is the extensive and diverse range of research topics being researched by students and staff in the Centre.

Career Prospects

Introduction
Many of our PhD graduates have moved into academic and research roles in Higher Education while others go on to play leading roles in educational practice, the public sector or within NGO’s. Queen's postgraduates reap exceptional benefits. Unique initiatives, such as Degree Plus and Researcher Plus bolster our commitment to employability. For further information on career opportunities at PhD level please contact the Faculty of Engineering and Physical Sciences Student Recruitment Team on askEPS@qub.ac.uk. Our advisors - in consultation with the School - will be happy to provide further information on your research area, possible career prospects and your research application.

People teaching you

Dr David Hester
Senior Lecturer
Natural and Built Environment

Dr Faris Elghaish
Lecturer
Natural and Built Environment

Dr Giuseppina Amato
Senior Lecturer
Natural and Built Environment

Dr Madjid Karimirad
Senior Lecturer
Natural and Built Environment

Dr Mohammed Sonebi
Professor
Natural and Built Environment

Dr Nipuni Odara Merenchi Galappaththige
Lecturer
Natural and Built Environment

Dr Raymond Flynn
Senior Lecturer
Natural and Built Environment

Dr Rory Doherty
Senior Lecturer
Natural and Built Environment

Dr Saed Hasan
Lecturer
Natural and Built Environment

Dr Siobhan Cox
Senior Lecturer
Natural and Built Environment

Dr Sree Nanukuttan
Senior Lecturer
Natural and Built Environment

Dr Stephen McIlwaine
Senior Lecturer
Natural and Built Environment

Dr Tara Brooks
Senior Lecturer
Natural and Built Environment

Dr Ulrich Ofterdinger
Reader
Natural and Built Environment

Dr Xianhai Meng
Senior Lecturer
Natural and Built Environment

Professor G Hamill
Professor
Natural and Built Environment

Professor Marios Soutsos
Professor
Natural and Built Environment

Professor Wei Sha
Professor
Natural and Built Environment

Learning Outcomes
A research degree offers students an opportunity to foster their capacity for independent research and critical thought. It also allows students to explore an area of interest and so understand and solve theoretical and practical problems within the field.

Undertaking a research degree also enhances a student’s written and oral communication skills, and a PhD is almost always a formal requirement for an academic post.
Course structure
You will carry out original research under the guidance of your supervisory team. There is no specific course content as such. This independent research is complemented by postgraduate skills training organised by Queen’s Graduate School, and other internal and external training courses organised through your supervisor.

You will normally register, in the first instance, as an ‘undifferentiated PhD student’ which means that you have satisfied staff that you are capable of undertaking a research degree. The decision as to whether you should undertake an MPhil or a PhD is delayed until you have completed ‘differentiation’.

Differentiation takes place about 9-12 months after registration for full time students and about 18-30 months for part time students: You are normally asked to submit work to a panel of up two academics and this is followed up with a formal meeting with the ‘Differentiation Panel’. The Panel then make a judgement about your capacity to continue with your study. Sometimes students are advised to revise their research objectives or to consider submitting their work for an MPhil qualification rather than a doctoral qualification.

To complete with a doctoral qualification you will be required to submit a thesis of no more than 80,000 words and you will be required to attend a viva voce [oral examination] with an external and internal examiner to defend your thesis.

A PhD programme runs for 3-4 years full-time or 6-8 years part-time. Students can apply for a writing up year should it be required.

The PhD is open to both full and part time candidates and is often a useful preparation for a career within academia or consultancy.

Full time students are often attracted to research degree programmes because they offer an opportunity to pursue in some depth an area of academic interest.

The part time route is a suitable option for those unable to study for a PhD full time. This may be due to family commitments or those already in employment. On the former, studying part time for a PhD can be very accommodating in juggling different responsibilities. On the latter, part time candidates often choose to research an area that is related to their professional responsibilities.

If you meet the Entry Requirements, the next step is to check whether we can supervise research in your chosen area. We only take students to whom we can offer expert research supervision from one of our academic staff. Therefore, your research question needs to engage with the research interests of one of our staff.

Application Process
Please review the eligibility criteria on the webpages. If you believe that you meet these criteria then follow the steps below:

Select ONE potential supervisor from our list of Academic Staff (https://www.qub.ac.uk/schools/NBE/OurPeople/AcademicandResearchStaff/) and send an email containing:

a brief CV (1-2 pages maximum)
a concise statement that you are interested in studying for a PhD, stating when you would start, and how you would plan to fund the research
a brief statement of the research question or interest, and how you think the question could be investigated

Our academic staff welcome approaches from prospective students; staff can liaise with applicants to develop a research proposal of mutual interest. The potential supervisor should get back to you within a couple of weeks. They may invite you to meet with them or they may invite you to apply formally.

If you have difficulty identifying or contacting an appropriate supervisor, please contact Catherine Boone (email: pgr.snbe@qub.ac.uk) who will be happy to help.

For part-time study – the closing date for this option is 31st August each year.

For full-time study (self-funding) – for those full time candidates who do not wish to compete for a studentship or who are not eligible to compete for a studentship the closing date is 31st August each year.

For full-time study and application for a studentship/award; please be aware that awards are only available to full time students. Candidates wishing to apply for studentships available within the School must apply for full-time study at the same time. Available studentships and closing dates are detailed on the School's studentships web page: https://www.qub.ac.uk/schools/NBE/Study/PostgraduateResearch/ResearchStudentships/
Assessment

Assessment processes for the research degree differ from taught degrees. Students will be expected to present drafts of their work at regular intervals to their supervisor who will provide written and oral feedback; a formal assessment process takes place annually.

This Annual Progress Review requires students to present their work in writing and orally to a panel of academics from within the School. Successful completion of this process will allow students to register for the next academic year.

The final assessment of the doctoral degree is both oral and written. Students will submit their thesis to an internal and external examining team who will review the written thesis before inviting the student to orally defend their work at a Viva Voce.

Feedback

Supervisors will offer feedback on draft work at regular intervals throughout the period of registration on the degree.

Entrance requirements

Graduate
The minimum academic requirement for admission to a research degree programme is normally an Upper Second Class Honours degree from a UK or ROI HE provider, or an equivalent qualification acceptable to the University. Further information can be obtained by contacting the School.

International Students

For information on international qualification equivalents, please check the specific information for your country.

English Language Requirements

Evidence of an IELTS* score of 6.5, with not less than 5.5 in any component, or an equivalent qualification acceptable to the University is required. *Taken within the last 2 years.

International students wishing to apply to Queen's University Belfast (and for whom English is not their first language), must be able to demonstrate their proficiency in English in order to benefit fully from their course of study or research. Non-EEA nationals must also satisfy UK Visas and Immigration (UKVI) immigration requirements for English language for visa purposes.

For more information on English Language requirements for EEA and non-EEA nationals see: www.qub.ac.uk/EnglishLanguageReqs.

If you need to improve your English language skills before you enter this degree programme, INTO Queen's University Belfast offers a range of English language courses. These intensive and flexible courses are designed to improve your English ability for admission to this degree.

Tuition Fees

Northern Ireland (NI) 1 TBC
Republic of Ireland (ROI) 2 TBC
England, Scotland or Wales (GB) 1 TBC
EU Other 3 £25,600
International £25,600

1 EU citizens in the EU Settlement Scheme, with settled or pre-settled status, are expected to be charged the NI or GB tuition fee based on where they are ordinarily resident, however this is provisional and subject to the publication of the Northern Ireland Assembly Student Fees Regulations. Students who are ROI nationals resident in GB are expected to be charged the GB fee, however this is provisional and subject to the publication of the Northern Ireland Assembly student fees Regulations.

2 It is expected that EU students who are ROI nationals resident in ROI will be eligible for NI tuition fees. The tuition fee set out above is provisional and subject to the publication of the Northern Ireland Assembly student fees Regulations.

3 EU Other students (excludes Republic of Ireland nationals living in GB, NI or ROI) are charged tuition fees in line with international fees.

All tuition fees quoted are for the academic year 2021-22, and relate to a single year of study unless stated otherwise. Tuition fees will be subject to an annual inflationary increase, unless explicitly stated otherwise.

More information on postgraduate tuition fees.

Civil Engineering costs

There are no specific additional course costs associated with this programme.

Additional course costs

All Students

Depending on the programme of study, there may also be other extra costs which are not covered by tuition fees, which students will need to consider when planning their studies . Students can borrow books and access online learning resources from any Queen's library. If students wish to purchase recommended texts, rather than borrow them from the University Library, prices per text can range from £30 to £100. Students should also budget between £30 to £100 per year for photocopying, memory sticks and printing charges. Students may wish to consider purchasing an electronic device; costs will vary depending on the specification of the model chosen. There are also additional charges for graduation ceremonies, and library fines. In undertaking a research project students may incur costs associated with transport and/or materials, and there will also be additional costs for printing and binding the thesis. There may also be individually tailored research project expenses and students should consult directly with the School for further information.

Bench fees

Some research programmes incur an additional annual charge on top of the tuition fees, often referred to as a bench fee. Bench fees are charged when a programme (or a specific project) incurs extra costs such as those involved with specialist laboratory or field work. If you are required to pay bench fees they will be detailed on your offer letter. If you have any questions about Bench Fees these should be raised with your School at the application stage. Please note that, if you are being funded you will need to ensure your sponsor is aware of and has agreed to fund these additional costs before accepting your place.

How do I fund my study?

1.PhD Opportunities

Find PhD opportunities and funded studentships by subject area.

2.Funded Doctoral Training Programmes

We offer numerous opportunities for funded doctoral study in a world-class research environment. Our centres and partnerships, aim to seek out and nurture outstanding postgraduate research students, and provide targeted training and skills development.

3.PhD loans

The Government offers doctoral loans of up to £26,445 for PhDs and equivalent postgraduate research programmes for English- or Welsh-resident UK and EU students.

4.International Scholarships

Information on Postgraduate Research scholarships for international students.

Funding and Scholarships

The Funding & Scholarship Finder helps prospective and current students find funding to help cover costs towards a whole range of study related expenses.

How to Apply

Apply using our online Postgraduate Applications Portal and follow the step-by-step instructions on how to apply.

Find a supervisor

If you're interested in a particular project, we suggest you contact the relevant academic before you apply, to introduce yourself and ask questions.

To find a potential supervisor aligned with your area of interest, or if you are unsure of who to contact, look through the staff profiles linked here.

You might be asked to provide a short outline of your proposal to help us identify potential supervisors.

Download Postgraduate Prospectus