Programme Specifications

Modules offered on Mathematics programmes in 2024-25

Semester 1	Semester 2	
Level 1		
MTH1011 Introduction to Algebra and Analysis (30 CATS) ^a		
MTH1021 Mathematical Methods 1 (30 CATS)		
MTH1015 Mathematical Reasoning (10 CATS)	MTH1025 Algorithmic Thinking (10 CATS)	
SOR1020 Introduction to Prob	ability and Statistics (30 CATS)	
	SOR1021 Introduction to SOR Methods (10CAT)	
Lev	rel 2	
MTH2011 Linear Algebra	MTH2013 Metric Spaces	
MTH2012 Analysis	MTH2014 Group Theory	
MTH2031 Classical Mechanics	MTH2021 Mathematical Methods 2	
SOR2003 Methods of Operational Research	SOR2002 Statistical Inference	
Lev	rel 3	
MTH3011 Measure and Integration	MTH3021 Dynamical Systems	
MTH3012 Algebra	MTH3024 Modelling and Simulation	
MTH4323 Geometry of Optim./Top. Data An.b	MTH3025 Financial Mathematics	
MTH3023 Numerical Analysis	MTH4321 Fourier Analysis & PDEs/Funct. An.t	
MTH3031 Classical Fields (SUSPENDED)	MTH4331 Quantum Fields/Statistical Mech.b (SUSPENDED)	
MTH3032 Quantum Theory	SOR3008 Stat. Data Mining & Machine Learn.	
SOR3004 Linear Models	AMA3011 Applied Mathematics Project	
SOR3012 Stochastic Processes and Risk	AMA3022 Team Project: Maths with Finance	
AMA3011 Applied Mathematics Project	PMA3013/AMA3020 (Mathem.) Investigations	
Lev	rel 4	
MTH4011 Topology	MTH4021 Applied Algebra and Cryptography	
MTH4323 Geometry of Optim./Top. Data An.b	MTH4321 Fourier Analysis & PDEs/Funct. An.b	
MTH4024 Practical Methods for PDEs	MTH4022 Information Theory and Biodiversity	
MTH4031 Advanced Quantum Theory	MTH4023 Mathematical Methods for QIP	
	MTH4331 Quantum Fields/Statistical Mech.b (SUSPENDED)	
SOR4008 Bayesian Statistics SOR4007 Survival Analysis		
AMA4005 / PMA4001 / SOR4001 Project (40 CATS)		

^a All modules are 20 CATS unless indicated otherwise.

^b Modules taught in alternate years that can be taken at Level 3 or Level 4. ^c Level 2 Employability for Mathematics/Physics (0 CATS) must be taken to take a placement year.

Degree Programmes

- 1. BSc Mathematics
- 2. BSc Mathematics and Statistics and Operational Research
- 3. BSc (Applied) Mathematics and Physics
- 4. BSc Theoretical Physics
- 5. BSc Mathematics and Computer Science
- 6. BSc Mathematics with Finance
- 7. BSc Mathematics with French/Spanish
- 8. MMath/MSci Mathematics*
- 9. MMath/MSci Mathematics and Statistics and Operational Research
- 10. MSci Applied Mathematics and Physics
- 11. MPhys/MSci Theoretical Physics
- 12. MSci Mathematics and Computer Science

* On the MMath/MSci Mathematics programme, students are expected to specialise in one of the four *streams*: Analysis/Differential Equations stream, Algebra stream, Quantum stream, Modelling stream. Each of these streams contains a number of compulsory modules, as well as some recommended (r) modules, *in addition to the modules that are compulsory for all MSci (MMath) students*, leading to a Level 4 project in the chosen area of specialisation.

01	Compulsory and recommended (r) modules		
Stream	Level 2	Level 3	Level 4
Analysis/DEs		Dynamical Systems, Functional Analysis/Fourier Analysis & Application to PDEs	Topology, Functional Analysis/Fourier Analysis & Application to PDEs
Algebra	Group Theory	Algebra	Topology, Applied Algebra and Cryptography
Quantum	Classical Mechanics	Quantum Theory, Functional Analysis/Fourier Analysis & Application to PDEs, Numerical Analysis or Modelling & Simulation (r)	Advanced Quantum Theory, Functional Analysis/Fourier Analysis & Application to PDEs
Modelling	Classical Mechanics (r)	Numerical Analysis, Dynamical Systems, Modelling & Simulation (r)	Functional Analysis/Fourier Analysis & Application to PDEs (r), Practical Methods for PDEs

BSc Mathematics

Core module

Recommended module

Alternative core modules

Semester 1	Semester 2		
Level 1			
Introduction to Algebra and Analysis (30 CATS)			
Mathematical Methods 1 (30 CATS)			
Mathematical Reasoning (10 CATS) Algorithmic Thinking (10 CATS)			
Introduction to Probability	y and Statistics (30 CATS)		
	Introduction to SOR Methods (10 CATS)		
Level 2			
Analysis	Metric Spaces		
Linear Algebra	Group Theory		
Classical Mechanics	Mathematical Methods 2		
Methods of Operational Research	Statistical Inference		
Level 3			
Measure and Integration	Dynamical Systems		
Algebra			
Geometry of Optimisation / Top. Data Analysis	Financial Mathematics		
	Fourier Analysis & PDEs / Functional Analysis		
Quantum Theory			
Linear Models	Statistical Data Mining & Machine Learning		
Stochastic Processes and Risk	Mathematical Investigations		
Numerical Analysis	Modelling and Simulation		
Applied Mathematics Project	Applied Mathematics Project		

At Stage 2, students should note the importance of taking Classical Mechanics or Group Theory, or Statistical Inference, as they are pre-requisites for a number of modules at Stage 3. At Stage 3, students must take Numerical Analysis or Modelling and Simulation, and take Applied Mathematics Project in semester 1 or semester 2, or Mathematical Investigations (but not both).

BSc Mathematics and Statistics and Operational Research

Core module Recommended module Alternative core modules

Semester 1	Semester 2	
Level 1		
Introduction to Algebra and Analysis (30 CATS)		
Mathematical Methods 1 (30 CATS)		
Mathematical Reasoning (10 CATS) Algorithmic Thinking (10 CATS)		
Introduction to Probability and Statistics (30 CATS)		
	Introduction to SOR Methods (10 CATS)	
Level 2		
Analysis	Metric Spaces	
Linear Algebra	Group Theory	
Classical Mechanics	Mathematical Methods 2	
Methods of Operational Research	Statistical Inference	
Lev	el 3	
Measure and Integration	Dynamical Systems	
Algebra		
Geometry of Optimisation / Top. Data Analysis	Financial Mathematics	
	Fourier Analysis & PDEs / Functional Analysis	
Quantum Theory		
Linear Models	Statistical Data Mining & Machine Learning	
Stochastic Processes and Risk	Mathematical Investigations	
Numerical Analysis	Modelling and Simulation	
Applied Mathematics Project	Applied Mathematics Project	

Students must take at least 80 CATS of SOR modules across Levels 2 and 3. At Stage 3, students must take Applied Mathematics Project in semester 1 or semester 2, or Mathematical Investigations (but not both).

BSc Applied Mathematics and Physics

Core module Recommended module Core external module

Semester 1	Semester 2	
Level 1		
Introduction to Algebra and Analysis (30 CATS)		
Mathematical Met	thods 1 (30 CATS)	
PHY1001 Foundatio	n Physics (40 CATS)	
PHY1004 Scientif	ic Skills (20 CATS)	
Lev	el 2	
Analysis	Metric Spaces	
Linear Algebra	Group Theory	
Classical Mechanics	Mathematical Methods 2	
PHY2001 Quantum and Statistical Physics	PHY2004 Electricity, Magnetism and Optics	
PHY2003 Astrophysics I	PHY2002 Physics of the Solid State	
PHY2005 Atomic and Nuclear Physic		
Level 3		
Measure and Integration	Dynamical Systems	
Algebra	Financial Mathematics	
Geometry of Optimisation / Top. Data Analysis	Fourier Analysis & PDEs / Functional Analysis	
Quantum Theory/PHY3001 Quant. Mech. & Rel.	PHY3002 Advanced Solid State Physics	
PHY3004 Advanced Electromagnetism & Optics	PHY3003 Astrophysics II	
PHY3006 Physics in Medicine	PHY3005 Nuclear & Particle Physics	
Numerical Analysis / PHY3009 Comput. Proj.	Modelling and Simulation	
Applied Maths Project / PHY3007 Project	Applied Maths Project / PHY3007 Project	

At Stage 3, students take either Applied Mathematics Project or PHY3007 Project, in addition to at least 2 taught modules from Mathematics and 2 taught modules from Physics, including Quantum Theory or PHY3001, and Numerical Analysis or Modelling & Simulation, or PHY3009.

BSc Theoretical Physics

Core module Recommended module Core external module

Semester 1	Semester 2		
Level 1			
Introduction to Algebra and Analysis (30 CATS)			
Mathematical Met	thods 1 (30 CATS)		
PHY1001 Foundation Physics (40 CATS)			
PHY1004 Scientific Skills (20 CATS)			
Level 2			
Linear Algebra	PHY2002 Physics of the Solid State		
Classical Mechanics	Mathematical Methods 2		
PHY2001 Quantum and Statistical Physics	PHY2004 Electricity, Magnetism and Optics		
Lev	el 3		
PHY3004 Advanced Electromagn. and Optics			
Quantum Theory	Modelling and Simulation		
Numerical Analysis	Financial Mathematics		
	PHY3002 Advanced Solid State Physics		
	PHY3005 Nuclear & Particle Physics		
Applied Mathematics Project	Applied Mathematics Project		

At Stage 3, students must take 3 compulsory taught modules and the Applied Mathematics Project (in semester 1 or 2), and two optional modules from Mathematics or Physics.

BSc Mathematics and Computer Science

Core module

Recommended module

Core external module

Semester 1	Semester 2	
Level 1		
Introduction to Algebra and Analysis (30 CATS)		
Mathematical Met	thods 1 (30 CATS)	
Mathematical Reasoning (10 CATS)	Algorithmic Thinking (10 CATS)	
CSC1025 Procedural Programming	CSC1029 Object Oriented Programming	
Lev	el 2	
Analysis	Metric Spaces	
Linear Algebra	Group Theory	
Classical Mechanics	Mathematical Methods 2	
CSC2059 Data Structures and Algorithms	CSC2060 Theory of Computation	
CSC2065 Professional and Transferrable Skills	Skills CSC2062 Introduction to Al & Machine Learning	
Lev	el 3	
Measure and Integration	Dynamical Systems	
Algebra		
Geometry of Optimisation / Top. Data Analysis	Financial Mathematics	
	Fourier Analysis & PDEs / Functional Analysis	
Quantum Theory		
Numerical Analysis	Modelling and Simulation	
CSC3021 Concurrent Programming	CSC3001 Formal Methods	
CSC3067 Video Analytics & Machine Learning	CSC3066 Deep Learning	
	Mathematical Investigations	
Applied Mathematics Project	Applied Mathematics Project	

At Stage 2, students take at least 40 CATS from Mathematics and 40 CATS from Computer Science. At Stage 3, the choice must include either Applied Mathematics Project or Mathematical Investigations, in addition to at least 40 CATS from Mathematics and 40 CATS from Computer Science.

BSc Mathematics with Finance

Core module Recommended module Core external module

Semester 1	Semester 2	
Level 1		
Introduction to Algebra and Analysis (30 CATS)		
Mathematical Methods 1 (30 CATS)		
Introduction to Probability	y and Statistics (30 CATS)	
	Introduction to SOR Methods (10 CATS)	
	FIN1001 Financial Institutions and Markets	
Lev	rel 2	
Linear Algebra	Mathematical Methods 2	
Methods of Operational Research	Statistical Inference	
FIN2006 Financial Decision Making	FIN2008 Financial Market Theory	
Lev	rel 3	
Linear Models	Financial Mathematics	
Stochastic Processes and Risk	Statistical Data Mining & Machine Learning	
Numerical Analysis	Team Project: Mathematics with Finance	

BSc Mathematics with French/Spanish

Core module Recommended module Core external module

Semester 1	Semester 2		
Level 1			
Introduction to Algebra and Analysis (30 CATS)			
Mathematical Methods 1 (30 CATS)			
Mathematical Reasoning (10 CATS) Algorithmic Thinking (10 CATS)			
FRH1101 French 1 / SPA	1101 Spanish 1 (40 CATS)		
Level 2			
Analysis	Metric Spaces		
Linear Algebra	Group Theory		
Classical Mechanics	Mathematical Methods 2		
FRH2101 French 2 / SPA2101 Spanish 2 (40 CATS)			
MTH3999 International F	Placement - Year Abroad		
Lev	el 3		
Measure and Integration	Dynamical Systems		
Algebra	Financial Mathematics		
Geometry of Optimisation / Top. Data Analysis	Fourier Analysis & PDEs / Functional Analysis		
Quantum Theory	Mathematical Investigations		
Numerical Analysis	Modelling and Simulation		
Applied Mathematics Project	Applied Mathematics Project		
FRH3101 French 3 / SPA3101 Spanish 3 (40 CATS)			

At Stage 3, students must take Numerical Analysis or Modelling and Simulation, and take Applied Mathematics Project in semester 1 or semester 2, or Mathematical Investigations (but not both).

MMath/MSci Mathematics

Core module

Recommended module

Alternative core modules

Semester 1	Semester 2		
Level 1			
Introduction to Algebra and Analysis (30 CATS)			
Mathematical Methods 1 (30 CATS)			
Mathematical Reasoning (10 CATS) Algorithmic Thinking (10 CATS)			
Introduction to Probability and Statistics (30 CATS)			
	Introduction to SOR Methods (10 CATS)		
Lev	rel 2		
Analysis	Metric Spaces		
Linear Algebra	Group Theory ^B		
Classical Mechanics ^Q	Mathematical Methods 2		
Methods of Operational Research	Statistical Inference		
Lev	vel 3		
Measure and Integration	Dynamical Systems ^{A,M}		
Algebra ^B			
Geometry of Optimisation / Top. Data Analysis	Financial Mathematics		
	Fourier Analysis & PDEsA,Q/Functional Analys		
Quantum Theory ^Q			
Numerical Analysis ^M	Modelling and Simulation		
Linear Models	Statistical Data Mining & Machine Learning		
Stochastic Processes and Risk	InvestigationsQ,M/Mathematical InvestigationsA,B		
Level 4			
Topology ^{A,B}	Applied Algebra and Cryptography ^B		
Geometry of Optimisation / Top. Data Analysis	Fourier Analysis & PDEsA/Functional Analysis		
Advanced Quantum Theory ^Q	Mathematical Methods for QIP		
Practical Methods for PDEs ^M	Information Theory and Biodiversity		
Bayesian Statistics	Survival Analysis		
AMA4005 Project ^{Q,M} / PMA4001 Project ^{A,B} (40 CAT)			

A Modules that must be taken by students on the Analysis stream

At Stage 2, students should note the importance of taking Classical Mechanics or Group Theory, or Statistical Inference, as they are pre-requisites for a number of modules at Stage 3.

^B Modules that must be taken by students in the Algebra stream

^Q Modules that must be taken by students in the Quantum stream

M Modules that must be taken by students in the Modelling stream

MMath/MSci Mathematics and Statistics and Operational Research

Core module Recommended module Alternative core modules

Semester 1	Semester 2		
Level 1			
Introduction to Algebra and Analysis (30 CATS)			
Mathematical Methods 1 (30 CATS)			
Mathematical Reasoning (10 CATS)	Algorithmic Thinking (10 CATS)		
Introduction to Probability	and Statistics (30 CATS)		
	Introduction to SOR Methods (10 CATS)		
Lev	el 2		
Analysis	Metric Spaces		
Linear Algebra	Group Theory		
Classical Mechanics	Mathematical Methods 2		
Methods of Operational Research	Statistical Inference		
Lev	el 3		
Measure and Integration	Dynamical Systems		
Algebra			
Geometry of Optimisation / Top. Data Analysis	Financial Mathematics		
	Fourier Analysis & PDEs / Functional Analysis		
Quantum Theory			
Numerical Analysis	Modelling and Simulation		
Linear Models	Statistical Data Mining & Machine Learning		
Stochastic Processes and Risk	Investigations / Mathematical Investigations		
Level 4			
Topology	Applied Algebra and Cryptography		
Geometry of Optimisation / Top. Data Analysis	Fourier Analysis & PDEs / Functional Analysis		
Advanced Quantum Theory	Mathematical Methods for QIP		
Practical Methods for PDEs	Information Theory and Biodiversity		
Bayesian Statistics	Survival Analysis		
SOR4001 Project (40 CAT)			

Students will take at least 120 CATS of SOR modules across Levels 2, 3 and 4.

MSci Applied Mathematics and Physics

Core module	Recommended module		Core external module
Semest	ester 1		Semester 2
	Level 1		
I	ntroduction to Algebra	and Analysis	s (30 CATS)
	Mathematical Met	thods 1 (30 (CATS)
	PHY1001 Foundatio	n Physics (4	0 CATS)
	PHY1004 Scientifi	ic Skills (20 (CATS)
	Lev	el 2	
Analys	sis		Metric Spaces
Linear Alg	gebra		Group Theory
Classical Me	echanics		Mathematical Methods 2
PHY2001 Quantum and	d Statistical Physics	PHY2004	Electricity, Magnetism and Optics
PHY2003 Astr	ophysics I	PHY2	002 Physics of the Solid State
	PHY2005 Atomic and Nuclear Physics		05 Atomic and Nuclear Physics
	Lev	el 3	
Measure and	Intergation		Dynamical Systems
Algeb	ra Financial Mathematics		Financial Mathematics
Geometry of Optimisation	ation / Top. Data Analysis Fourier Analysis & PDEs / Functional Analy		alysis & PDEs / Functional Analysis
Quantum Theory/PHY300		PHY300	2 Advanced Solid State Physics
PHY3004 Advanced Elect			PHY3003 Astrophysics II
PHY3006 Physic			005 Nuclear & Particle Physics
Numerical Analysis / PH			Modelling and Simulation
PHY3008 Profe	PHY3008 Professional Skills Investigations / PHY3008 Professional		ions / PHY3008 Professional Skills
Level 4			
Topolo			
Geometry of Optimisation	· · · · · · · · · · · · · · · · · · ·		alysis & PDEs / Functional Analysis
Advanced Quar	,		thematical Methods for QIP
Practical Metho	Practical Methods for PDEs In		nation Theory and Biodiversity
DLIV4004 DL' D	male Disciplate (OO OATO)	DL '	- madulas (0, 10 - 1, 10 0 1, 10)
PHY4001 Physics Resea	PHY4001 Physics Research Project (60 CATS) Physics modules (2×10 or 4×10 CATS)		
AMA4005 Project (40 CAT)			

At Stage 3, students take Investigations or PHY3008 and at least 2 taught modules from Mathematics and 2 from Physics, including, Quantum Theory or PHY3001, and NA or M&S, or PHY3009. At Stage 4, students take AMA4005 and 40 CATS from Physics, or PHY4001 and 40 CATS from Maths, with additional modules from Maths (1st case) or Physics (2nd case).

MPhys/MSci Theoretical Physics

Core module Recommended module Core external module

Semester 1	Semester 2
Level 1	
Introduction to Algebra and Analysis (30 CATS)	
Mathematical Methods 1 (30 CATS)	
PHY1001 Foundation Physics (40 CATS)	
PHY1004 Scientific Skills (20 CATS)	
Level 2	
Linear Algebra	PHY2002 Physics of the Solid State
Classical Mechanics	Mathematical Methods 2
PHY2001 Quantum and Statistical Physics	PHY2004 Electricity, Magnetism and Optics
Level 3	
PHY3004 Advanced Electromagn. and Optics	
Quantum Theory	Modelling and Simulation
Numerical Analysis	Financial Mathematics
	PHY3002 Advanced Solid State Physics
	PHY3005 Nuclear & Particle Physics
	Investigations
Level 4	
Advanced Quantum Theory	
Practical Methods for PDEs	Information Theory and Biodiversity
	Mathematical Methods for QIP
	Physics modules (2×10 CATS)
AMA4005 Pro	oject (40 CAT)

At Stage 4 students can take two appropriate 10 CATS Physics modules: PHY4003 Ionising Radiation in Medicine, PHY4004 Medical Radiation Simulation, PHY4007 Laser Physics, PHY4008 Plasma Physics, PHY4009 Physics of Materials Characterisation, PHY4010 Physics of Nanomaterials, PHY4016 Cosmology.

MSci Mathematics and Computer Science

Core module

Recommended module

Core external module

Semester 1	Semester 2
Level 1	
Introduction to Algebra and Analysis (30 CATS)	
Mathematical Methods 1 (30 CATS)	
Mathematical Reasoning (10 CATS)	Algorithmic Thinking (10 CATS)
CSC1025 Procedural Programming	CSC1029 Object Oriented Programming
Level 2	
Analysis ^A	Metric Spaces ^A
Linear Algebra	Group Theory ^B
Classical Mechanics ^Q	Mathematical Methods 2 ^{Q,M}
CSC2059 Data Structures and Algorithms	CSC2060 Theory of Computation
CSC2065 Professional and Transferrable Skills	CSC2062 Introduction to AI & Machine Learning
Level 3	
Measure and Integration ^A	Dynamical Systems
Algebra ^B	Financial Mathematics
Geometry of Optimisation / Top. Data Analysis	Fourier Analysis & PDEs / Functional Analysis
Quantum Theory ^Q	Modelling and Simulation
Numerical Analysis ^M	
CSC3021 Concurrent Programming	CSC3001 Formal Methods
CSC3067 Video Analytics & Machine Learning	CSC3066 Deep Learning
	InvestigationsQ,M/Mathematical InvestigationsA,B
Level 4	
Topology ^{A,B}	Applied Algebra and Cryptography ^B
Geometry of Optimisation / Top. Data Analysis	Fourier Analysis & PDEs / Functional Analysis
Advanced Quantum Theory ^Q	Mathematical Methods for QIP
Practical Methods for PDEs ^M	Information Theory and Biodiversity
CSC4008 Digital Transformation:	CSC4003 Algorithms: Analysis and Application
AMA4005 Project ^{Q,M} / PMA4001 Project ^{A,B} (40 CAT)	

At Stages 2 and 3 students take at least 40 CATS from Mathematics and 40 CATS from Computer Science. Superscripts A, B, Q and M indicate modules recommended for students intending to pursue the Analysis, Algebra, Quantum or Modelling streams at Stages 2-4.