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Abstract
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1. Introduction

The last two decades have wittenesed an impressive production of unit root and station-

arity tests in heterogenous panel data with T and N large. The main motive in transfering

single time series unit root and stationarity tests to heterogenous panel data is to increase

signi�cantly the power of these tests. The early cohorts of panel unit root and stationary

tests were based on the implausible assumption that the cross-sectional units are indepen-

dent or at least not cross-sectionally correlated. However, in most empirical applications

this assumption has been found erroneous. Therefore, it became imperative to develop

new tests accounting for the likely possibility of cross-sectional dependence. This led, re-

cently, to a �urry of papers accounting for cross-sectional dependence of di¤erent forms in

panel unit root tests. For panel stationarity tests, the only contributions so far are Bai

and Ng (2005) and Harris, Leybourne and McCabe (2005), both of which corrected for

cross-sectional dependence by using the principal component analysis proposed by Bai and

Ng (2004). Breitung and Pesaran (2008) give an excellent survey of the �rst and second

generation panel tests. In this paper, we propose a simple test à la Pesaran (2007) for the

null hypothesis of stationarity in heterogeneous panel data with cross-sectional dependence

in the form of a common factor. We also allow for serial correlation in the disturbance.

The paper is organized as follows. Section 2 sets up the model and assumptions of

the panel augmented tests allowing for serial correlation in the error term. In section 3,

we examine the �nite sample property of the proposed tests via Monte Carlo simulations.

Section 4 concludes the paper.

2. Model, Assumption and Test Statistics

Let us consider the following model:

yit = z0t�i + ft
i + "it; "it = �i1"it�1 + � � �+ �ip"it�p + �it: (1)

for i = 1; � � � ; N and t = 1; � � � ; T where zt is deterministic. The commonly used speci�cation
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of zt in the literature is either zt = z�t = 1 or zt = z�t = [1; t]0: In this paper, we consider

these two cases. Accordingly, we de�ne �i = �i when z = 1 and �i = [�i; �i]
0 when z = [1; t]0.

In model (1), z0t�i is the individual e¤ect while ft is one dimensional unobserved common

factor, 
i is the loading factor and "it; the individual-speci�c (idiosyncratic) error, follows

an AR(p) process.

The lag length p may change depending on the cross-sectional units but we suppress the

dependence of p on i for notational convenience. Since it is often the case that the observed

process can be approximated by an autoregressive (AR) model, we do not consider the error

component model as in Hadri (2000) but an AR(p) model instead in this paper2.

Assumption 1 (i) There exist real numbers M1, M and M such that j
ij < M1 < 1 for

all i and 0 < M < j�
j < M <1 for all N , where �
 = N�1PN
i=1 
i.

(ii) The stochastic process ft is stationary with a �nite fourth moment and the functional

central limit theorem (FCLT) holds for the partial sum process of ft. (iii) The stochastic

process �it is independent of ft and i:i:d:(0; �2�i) across i and t with a �nite fourth moments.

Assumption 1(i) is concerned with the weights of the common factor ft. This assumption

implies that each individual is possibly a¤ected by the common factor with the �nite weight


i and that the absolute value of the average of 
i is bounded away from 0 and above both

in �nite samples and in asymptotics. The latter property is important in order to eliminate

the common factor e¤ect from the regression. A similar assumption is also entertained in

Pesaran (2007). Assumption 1(ii and iii) allow the common factor to be stationary but

still presumes that it is independent of the idiosyncratic errors, which are �nite order AR

processes with i.i.d. innovations.

Since our interest is whether yit are (trend) stationary or unit root processes, the testing

problem is given by

H 0
0 : �i(1) 6= 0 8i v.s. H 0

1 : �i(1) = 0 for some i;
2We do not consider a general linear process instead of an AR(p) model because in the case of a general

linear process the long-run variance estimator based on Toda and Yamamoto (1995), used here, will diverge
to in�nity at a rate T 2 under the alternative when the process is AR(1): As a result, our test based on the
lag-augmented method becomes inconsistent.
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where �i(L) = 1� �i1L� � � � � �ipLp.

For the correction of cross-sectional dependence, for each i; we regress yit on wt =

[z0t; �yt; �yt�1; � � � ; �yt�p] because "it are AR(p) processes and construct the test statistic in the

same way as Hadri (2000). That is,

ZA =

p
N(ST � �)

�
; (2)

where ST =
1

N

NX
i=1

STi with STi =
1

�̂2iT
2

TX
t=1

(Swit )
2 where Swit =

tX
s=1

b"is;
�̂2i is the estimator of the long-run variance de�ned later,

and

8<:
� = �� =

1
6 ; �2 = �2� =

1
45 when zt = z�t = 1;

� = �� =
1
15 ; �2 = �2� =

11
6300 when zt = z�t = [1; t]

0;

with b"it obtained for each i by regressing yit on wt = [z0t; �yt; �yt�1; � � � ; �yt�p] for t = 1; � � � ; T .
From (2) we can see that ST is the average of the KPSS test statistic across i and ZA

is normalized so that we obtain a limiting distribution. We call ZA the panel augmented

KPSS test statistic and construct Swit using these regression residuals. In this case it is not

di¢ cult to see that the numerator of each STi weakly converges to

1

T 2

TX
t=1

(Swit )
2 T
=) �2i

Z 1

0
(V "i (r) + ~
iRN )

2 dr

where ~
i = 
i=�
, RN is Op(1=
p
N) uniformly over 0 � r � 1 and does not depend on the sub-

script i; �2i = �2�i=(1��i1�� � ���ip)2 and V "i (r) = B"i (r)�
R r
0 z(t)

0dt
�R 1
0 z(t)z(t)

0dt
��1 R 1

0 z(t)dB
"
i (t)

with B"i (t) are independent standard Brownian motions. This suggests that we should di-

vide the numerator of each STi by a consistent estimator of the long-run variance �2i in

order to correct for serial correlation.

Several consistent estimators of the long-run variance3 for parametric model have been

proposed in the literature for univariate time series. For example, Leybourne and McCabe
3We cannot use here the estimator of the long-run variance proposed in Perron and Ng (1998), despite

its good properties in �nite samples, because it is consistent under the null of a unit root but not under the
null of stationarity which we are considering in this paper.
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(1994) propose to correct the stationarity test for serial correlation by estimating the AR

coe¢ cients based on the ML method for the ARIMA model. Their method is also applied

to panel data with no cross-sectional dependence by Shin and Snell (2006). However, our

preliminary simulation shows that this method does not work well in �nite samples and we

do not use this method in this paper.

We next consider to make use of the new truncation rule proposed by Sul, Phillips and

Choi (2005). Their method is originally developed for the prewhitening method, but it is

also applicable to parametric model. We �rst estimate the AR(p) model augmented by the

lags of �yt for each i by the least squares method

yit = z0t�̂i + �̂i1yit�1 + � � �+ �̂ipyit�p +  ̂i0�yt + � � �+  ̂ip�yt�p + �̂it;

and construct the estimator of the long-run variance by

�̂2iSPC =
�̂2�i

(1� �̂i)2
where �̂i = min

8<:1� 1p
T
;

pX
j=1

�̂ij :

9=; and �̂2�i =
1

T

TX
t=1

�̂2it:

We then propose to construct the test statistic (2) using

STSPCi =
1

�̂2iSPCT
2

TX
t=1

(Swit )
2:

We denote this test statistic as ZSPCA .

The other method we consider is the lag-augmented method proposed by Choi (1993) and

Toda and Yamamoto (1995). According to these papers, we intentionally add an additional

lag of yt and estimate an AR(p+ 1) model instead of an AR(p) model:

yit = z0t~�i + ~�i1yit�1 + � � �+ ~�ipyit�p + ~�ip+1yit�p�1 + ~ i0�yt + � � �+ ~ ip�yt�p + ~�it;

and construct the test statistic using

STLAi =
1

�̂2iLAT
2

TX
t=1

(Swit )
2 where �̂2iLA =

�̂2�i

(1� ~�i1 � � � � � ~�ip)2
:

We denote this test statistic as ZLAA .

5



The consistency of �̂2iSPC and �̂
2
iLA under the null hypothesis is established in the stan-

dard way and we omit here the details. On the other hand, they are shown to diverge

to in�nity at a rate of T under the alternative, so that STi can be seen as a consistent

stationarity test for univariate time series. It is also shown that the null distributions of

ZSPCA and ZLAA are asymptotically standard normal4 while they diverge to in�nity under

the alternative.

4.2. Finite sample property

In this section we conduct Monte Carlo simulations to investigate the �nite sample

properties of the panel augmented KPSS test using the long-run variance estimated by the

SPC or the LA methods in order to correct for serial correlation in the innovations. The

data generating process in this subsection is given as follows:

yit = z0t�i + ft
i + "it; "it = �i"it�1 + �it;

where ft � i:i:d:N(0; 1), �it � i:i:d:N(0; 1), ft and �it are independent of each other, �i = �i

for the constant case while �i = [�i; �i]
0 for the trend case with �i and �i being drawn from

independent U(0; 0:02), 
i are drawn from �1+U(0; 4) for strong cross-sectional correlation

case (SCC) and from U(0; 0:02) for weak cross-sectional correlation case (WCC), and �i, �i

and 
i are �xed throughout the iterations. The �i are drawn from 0:1+U(0; 0:8) under the

null hypothesis and they remain �xed throughout the iterations. On the other hand, the �i

are set to be equal to 1 for all i under the alternative. For the purpose of comparison, we

also calculate the test statistic proposed by Harris, Leybourne and McCabe (2005) (HLM

hereafter).

4Note that the central limit theorem can be applied to our panel augmented KPSS test whereas it cannot
be to Pesaran�s (2007) panel unit root tests. The reason is that, in the case of the unit root tests, the
common factor ft accumulates in yt so that its e¤ect remains even asymptotically. As a result, individual
unit root test statistics have a common component generated by ft and therefore they are not independent
asymptotically. Because of this correlation, the central limit theorem cannot be applied to the panel unit
root tests. On the other hand, the common factor ft does not permanently accumulate in yt because yt is
stationary under the null hypothesis. This leads to the asymptotic independence of individual statistics STi
and thus we can apply the central limit theorem to the panel stationarity tests.
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Table 1 reports the sizes of the tests. There are no entries for HLM test when T = 10

because the time dimension is too short to calculate their test statistic. When only a

constant is included in the model, the panel augmented KPSS test corrected by the SPC

method tends to be undersized for moderate size of T for SCC (strong cross-correlation) case

while it is oversized for small or large size of T , although the over-rejection is not so severe

when N = 100 and T = 200. For WCC (weak cross-correlation) case ZSPCA is undersized5

except for the case of T = 10. The augmented KPSS test corrected by the LA method has a

similar property as ZSPCA for SCC case while the size of the test is relatively well controlled

for WCC case. On the other hand, the size of HLM test seems to be better controlled for

moderate or large size of T , although the test becomes undersized for large size of N and

small or moderate size of T .

When both a constant and a linear trend are included in the model, the overall property

of ZSPCA and ZLAA is preserved while HLM test tends to be undersized for N larger than 20.

Table 2 shows the nominal powers of the tests. Because of the size distortion of the tests

it is not easy to compare the powers of these tests but we observe that all the tests are less

powerful for the moderate size of T due to the undersize property of the tests. In some cases

the panel augmented KPSS test apparently dominates HLM test but the reversed relation

is observed in other cases. For example, the empirical sizes of ZSPCA , ZLAA and HLM test

are 0.009, 0.022 and 0.078 when N = 10 and T = 30 for the constant case with SCC, while

the powers of these tests are 0.437, 0.262 and 0.218. On the other hand, the sizes of these

tests are 0.058, 0.076 and 0.054 when N = 10 and T = 100 for the constant case with WCC

while the powers are 0.878, 0.812 and 1.00.

5 It seems that the long-run variance is well estimated by the method proposed by Sul et al. (2005). But
it is well known that the numerator of the KPSS statistic has a downward bias (cf inter alia Shin and Snell
(2006) and Kurozumi and Tanaka (2010)). As a result, each test statistic STi is downward biased. These
downward biases accumulate as N increases leading to the undersize of the tests based on ZSPCA : Another
problem is that the centering and scaling constants are derived asymptotically, T ! 1: When T is �nite
these constants may be inappropriate. We did some additional simulations employing the bias corrections
proposed by Kurozumi and Tanaka (2010) and the centering and scaling constants for �xed T suggested
by Hadri and Larsson (2005). We found that the results after corrections are very similar to those before
corrections except for the case where T = 10. In the latter case, the �nite sample corrections are e¤ective in
reducing the severe over-size distorsions.
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Although our simulations are limited, it is di¢ cult to recommend one of these tests

because none of them dominates the others. It seems that HLM test tends to work relatively

well in the constant case because the size of the test is more or less controlled in many cases

and it has moderate power, whereas the panel augmented KPSS test with SPC correction

seems to perform best in many cases corresponding to the trend case (all the other tests

tend to be undersized in this case) and is most powerful in many cases.

5. Conclusion

In this paper we extended Hadri�s (2000) test to correct for cross-sectional dependence

à la Pesaran (2007) in the presence of serial correlation. The panel augmented KPSS test

with SPC correction seems to perform best in many instances corresponding to the trend

case (all the other tests tend to be undersized in this case) and is most powerful in many

cases.
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Table 1. Size of the tests: serially correlated case

constant case trend case
SCC WCC SCC WCC

N T ZSPCA ZLAA HLM ZSPCA ZLAA HLM ZSPCA ZLAA HLM ZSPCA ZLAA HLM
10 0.075 0.338 - 0.062 0.262 - 0.289 0.650 - 0.535 0.800 -
20 0.004 0.068 0.033 0.004 0.069 0.038 0.001 0.029 0.027 0.003 0.039 0.034
30 0.009 0.022 0.078 0.009 0.036 0.086 0.006 0.021 0.059 0.011 0.029 0.068

10 50 0.040 0.062 0.086 0.018 0.046 0.079 0.030 0.050 0.056 0.014 0.034 0.056
100 0.061 0.101 0.064 0.024 0.070 0.064 0.045 0.085 0.033 0.014 0.060 0.033
200 0.109 0.124 0.058 0.058 0.076 0.054 0.120 0.135 0.051 0.053 0.073 0.053
10 0.081 0.425 - 0.080 0.338 - 0.437 0.859 - 0.759 0.922 -
20 0.002 0.059 0.011 0.002 0.067 0.015 0.001 0.021 0.010 0.001 0.036 0.013
30 0.002 0.008 0.043 0.004 0.033 0.058 0.001 0.008 0.023 0.006 0.022 0.031

20 50 0.025 0.048 0.088 0.009 0.042 0.075 0.013 0.026 0.037 0.006 0.025 0.031
100 0.041 0.087 0.074 0.013 0.072 0.072 0.026 0.059 0.024 0.006 0.044 0.022
200 0.122 0.150 0.055 0.040 0.071 0.055 0.121 0.154 0.036 0.029 0.063 0.038
10 0.088 0.499 - 0.085 0.386 - 0.488 0.930 - 0.832 0.948 -
20 0.001 0.068 0.003 0.001 0.063 0.006 0.001 0.020 0.003 0.002 0.039 0.007
30 0.001 0.005 0.026 0.003 0.029 0.040 0.001 0.006 0.009 0.004 0.016 0.016

30 50 0.020 0.045 0.076 0.007 0.041 0.064 0.010 0.027 0.019 0.006 0.023 0.014
100 0.034 0.078 0.062 0.013 0.063 0.063 0.017 0.050 0.014 0.004 0.036 0.014
200 0.131 0.176 0.058 0.027 0.071 0.059 0.145 0.187 0.028 0.020 0.059 0.031
10 0.089 0.635 - 0.103 0.444 - 0.603 0.984 - 0.917 0.980 -
20 0.001 0.045 0.000 0.002 0.057 0.002 0.000 0.017 0.001 0.004 0.042 0.003
30 0.000 0.001 0.013 0.001 0.029 0.020 0.000 0.002 0.003 0.002 0.012 0.005

50 50 0.009 0.032 0.050 0.002 0.041 0.042 0.002 0.013 0.005 0.002 0.016 0.004
100 0.030 0.076 0.059 0.006 0.049 0.060 0.017 0.040 0.010 0.004 0.029 0.009
200 0.089 0.122 0.056 0.023 0.061 0.058 0.082 0.118 0.025 0.016 0.045 0.026
10 0.097 0.752 - 0.163 0.529 - 0.877 1.000 - 0.986 0.996 -
20 0.000 0.040 0.000 0.001 0.054 0.000 0.000 0.014 0.000 0.007 0.059 0.000
30 0.000 0.001 0.001 0.001 0.035 0.002 0.000 0.001 0.000 0.001 0.008 0.000

100 50 0.003 0.018 0.018 0.001 0.032 0.013 0.001 0.003 0.000 0.001 0.007 0.000
100 0.028 0.067 0.045 0.005 0.050 0.049 0.015 0.030 0.002 0.001 0.019 0.002
200 0.084 0.124 0.049 0.016 0.049 0.056 0.078 0.114 0.013 0.009 0.032 0.014
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Table 2. Power of the tests: serially correlated case

constant case trend case
SCC WCC SCC WCC

N T ZSPCA ZLAA HLM ZSPCA ZLAA HLM ZSPCA ZLAA HLM ZSPCA ZLAA HLM
10 0.229 0.564 - 0.092 0.315 - 0.186 0.537 - 0.373 0.726 -
20 0.323 0.282 0.033 0.162 0.269 0.040 0.000 0.044 0.004 0.000 0.070 0.006
30 0.437 0.262 0.218 0.267 0.324 0.231 0.003 0.041 0.001 0.002 0.079 0.001

10 50 0.695 0.373 0.740 0.454 0.461 0.739 0.039 0.086 0.000 0.023 0.155 0.001
100 0.843 0.521 0.985 0.669 0.631 0.984 0.374 0.207 0.113 0.260 0.357 0.113
200 0.944 0.672 1.000 0.878 0.812 1.000 0.831 0.413 0.890 0.700 0.636 0.894
10 0.312 0.748 - 0.123 0.392 - 0.222 0.705 - 0.508 0.857 -
20 0.511 0.445 0.004 0.205 0.336 0.008 0.000 0.035 0.000 0.000 0.068 0.001
30 0.609 0.407 0.194 0.336 0.413 0.200 0.000 0.036 0.000 0.001 0.085 0.000

20 50 0.862 0.587 0.894 0.503 0.541 0.890 0.042 0.100 0.000 0.021 0.187 0.000
100 0.944 0.748 1.000 0.714 0.722 1.000 0.606 0.297 0.083 0.344 0.464 0.084
200 0.993 0.861 1.000 0.930 0.903 1.000 0.965 0.606 0.987 0.790 0.777 0.986
10 0.367 0.814 - 0.146 0.420 - 0.251 0.817 - 0.586 0.899 -
20 0.608 0.574 0.001 0.231 0.376 0.002 0.000 0.030 0.000 0.000 0.064 0.000
30 0.659 0.512 0.151 0.369 0.450 0.160 0.000 0.029 0.000 0.000 0.080 0.000

30 50 0.898 0.716 0.949 0.525 0.578 0.950 0.046 0.114 0.000 0.019 0.195 0.000
100 0.962 0.844 1.000 0.728 0.762 1.000 0.710 0.390 0.063 0.394 0.518 0.060
200 0.996 0.921 1.000 0.947 0.930 1.000 0.981 0.765 0.998 0.831 0.844 0.999
10 0.449 0.928 - 0.167 0.452 - 0.288 0.919 - 0.703 0.945 -
20 0.807 0.739 0.000 0.267 0.410 0.000 0.000 0.020 0.000 0.000 0.072 0.000
30 0.762 0.612 0.114 0.399 0.490 0.126 0.000 0.018 0.000 0.000 0.088 0.000

50 50 0.977 0.872 0.989 0.546 0.610 0.989 0.051 0.107 0.000 0.019 0.222 0.000
100 0.995 0.943 1.000 0.752 0.788 1.000 0.895 0.469 0.028 0.456 0.582 0.028
200 1.000 0.980 1.000 0.967 0.962 1.000 0.999 0.874 1.000 0.858 0.893 1.000
10 0.556 0.980 - 0.197 0.490 - 0.393 0.987 - 0.837 0.978 -
20 0.872 0.870 0.000 0.294 0.440 0.000 0.000 0.010 0.000 0.000 0.074 0.000
30 0.816 0.739 0.055 0.423 0.526 0.065 0.000 0.012 0.000 0.000 0.092 0.000

100 50 0.986 0.947 1.000 0.575 0.646 1.000 0.050 0.118 0.000 0.019 0.254 0.000
100 0.999 0.977 1.000 0.775 0.825 1.000 0.953 0.659 0.008 0.514 0.650 0.007
200 1.000 0.993 1.000 0.981 0.979 1.000 1.000 0.973 1.000 0.887 0.938 1.000
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